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Abstract

Compressive imaging is vital in computational science, engineering and medicine. Its aim is
to perform the challenging task of reconstructing images from highly undersampled phys-
ical measurements. Deep learning has shown substantial potential to outperform standard
techniques for compressive imaging, with empirical evidence indicating superior accuracy.
However, deep learning approaches are fraught with many key issues, including halluci-
nations, instabilities and unpredictable generalization. This motivates a growing body of
research to construct accurate neural networks with stability guarantees. In this thesis, we
construct stable, accurate and efficient neural networks designed to tackle Fourier imaging
problems under a gradient-sparse image model. The networks are constructed by unrolling
a novel optimization algorithm based on NESTA, which reconstructs images from under-
sampled Fourier measurements via TV minimization. To enable fast image reconstruction,
we apply a restart scheme which leads to the number of network layers growing logarithmi-
cally in the desired image error. Finally, we validate and explore our findings in a series of
numerical experiments. The main impact of our work is the construction of neural networks
that achieve the same performance guarantees as state-of-the-art handcrafted methods for
gradient-sparse imaging.

Keywords: deep learning; compressed sensing; Fourier imaging; unrolling; restart scheme;
adversarial perturbations
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Chapter 1

Introduction

The main goal of compressive imaging [5] is to reconstruct images from highly undersampled
physical measurements. This is a routine task throughout science and engineering, when it
is impractical (or impossible) to directly access the structure or object being imaged. In
this setting, a physical device (e.g. a medical scanner) acquires measurements for image
reconstruction, but due to time, resource or physical constraints, acquisition is limited to a
specific number or range of measurements. With limited measurement data, being able to
reconstruct images accurately is crucial to advance scientific and industrial development.

In mathematical terms, compressive imaging is typically framed as an inverse problem,
stated as

Given noisy measurements y = Ax + e, recover the image x.

The operator A refers to the forward (or measurement) operator, and describes how mea-
surements arise from the image without noise. The term e models corruption of the mea-
surements, which for example, accounts for sensor noise in data acquisition and modeling
errors. We consider a discrete version of the above problem where y, e ∈ Cm, x ∈ CN , and
the forward operator A ∈ Cm×N is a linear map.

What makes compressive imaging challenging is the ill-posed nature of recovery from
underdetermined data, i.e. when m≪ N . Even in the absence of noise, there can be many
images with measurements (derived from the forward model A) that are close to y. A reli-
able way to mitigate this ill-posedness is by exploiting a low-dimensional structure within
the class of images being recovered. One standard approach is to leverage the sparsity of
an image under a suitable transformation. Some common examples include sparsity under
wavelets, curvelets, shearlets and gradient operators. From here, an optimization prob-
lem is cast by encoding the sparsifying transformation as a regularization term and the
measurements as a data fidelity term, and then proceeds to be solved by an optimization
algorithm. This approach is part of a broader collection of model-based (or handcrafted,
regularization) imaging methods. Compressed sensing [5,20,35] provides a well-established
theoretical framework that can show accurate and stable recovery via sparsity model-based
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methods. This has led to standardized use and acceptance of imaging implementations based
on compressed sensing, especially in medical imaging [5, 66,81].

Throughout this thesis we examine sparsity under the discrete gradient operator, referred
to as gradient-sparsity. The operator provides a sparse model for piecewise constant images
and is known to preserve image discontinuities (edges). Many natural images can be viewed
as approximately piecewise constant, and thus be approximately sparse under the gradient
operator. Moreover, the operator is directly related to total variation (TV) minimization, a
tool used widely throughout image processing [25,27] and compressive imaging [4,53,64,81].

1.1 Motivation

1.1.1 Deep learning in imaging

Deep learning and deep neural networks have seen a surge in success and popularity within
the past decade, with state-of-the-art performance in a multitude of image processing appli-
cations. Such prowess has led to the development and application of deep learning to inverse
problems in imaging, including compressive imaging [97]. In such a practice, the role of a
deep neural network in a reconstruction procedure is flexible, and can be in any part of
the image reconstruction pipeline. Deep learning approaches we distinguish are end-to-end
and hybrid-based. For end-to-end, the network N : Cm → CN is fully trained, e.g. on
pairs of images and their measurements. For hybrid-based, both learning and model-based
techniques are combined.

The research of deep learning for imaging is growing and rapidly evolving. We do not
attempt to provide a comprehensive review. For surveys with emphasis on medical imaging,
e.g. Magnetic Resonance Imaging (MRI), X-ray Computed Tomography (CT) and so on, see
[16,51,59,60,63,78,81,82,86,96,97,100]. For imaging in a broader context, see [5,8,62,65,77].

1.1.2 Hallucinations, instability, and unpredictable generalization

Contrary to the promising developments of deep learning for inverse problems, there has
been increasing concern that deep learning faces several key issues, which arguably inhibit
their use in critical applications. These issues are hallucinations, instabilities and unpre-
dictable generalization. Such concerns arise despite claims of performance gains via deep
learning over state-of-the-art model-based methods.

A hallucination is an image artifact inserted by the reconstruction procedure that is
absent in the ground truth image. The concern lies in the fact that hallucinations can
appear realistic or physical despite their falsehood. Instability refers to dramatic changes
in the reconstructed image from a small perturbation of the neural network input. The
image perturbation can be constructed in an adversarial fashion or sometimes from random
noise. Unpredictable generalization refers unpredictable behaviour of the reconstruction
procedure when tested on data outside of the training set. In the absence of any performance
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guarantees, degradation of image reconstruction quality can occur, even on test data near
the training set.

The observation of hallucinations in deep learning for medical imaging has been discussed
in several papers [15,17,43,44,69,88]. The worries around hallucinations is best summarized
in this quote from the authors of the 2020 fastMRI Challenge results [69], regarding the
qualitative radiologist evaluation:

“Such hallucinatory features are not acceptable and especially problematic if
they mimic normal structures that are either not present or actually abnormal.
... our results indicate that hallucination and artifacts remain a real concern,
particularly at higher accelerations. This topic is in major need for further de-
velopment.”

Similar sentiments are expressed in the other references listed.
The aforementioned issues in imaging were first discussed in [7,46] and explored further

recently with varying focus and research direction. For instance, [32, 36] investigate insta-
bility and generalization of both deep learning and model-based techniques. They found
that both approaches are susceptible to the same issues when exposed to worst-case noise
and unseen data, suggesting the problem is not unique to deep learning. By using ideas
from [10], [30] provides a rigorous computability theoretic treatment of stability and solving
inverse problems via neural networks. Contrary to [32, 36], experiments in [30, 75] suggest
robustness to worst-case noise for their respective model-based solvers. Moreover, [7] show
that increasing the number of measurements can degrade learning-based reconstruction
quality, a phenomena that does not occur in model-based methods based on compressed
sensing. [37] describes a framework to rigorously characterize when instability and halluci-
nations take place in general inverse problems. As with deep learning for inverse problems,
the research into their robustness is undergoing rapid and changing development. Some
related and general discussion can be found in the previously mentioned work and also
in [5, Chap. 20] and [6, 41, 47, 48, 52, 57, 58, 61, 68, 76, 78, 87, 89, 93, 94, 99]. Nonetheless, we
wish to emphasize that not all learning-based methods lead to instability. For example, the
constructions in [31,42] lead to provably stable neural networks.

We note that many of these issues are not exclusive to imaging. For instance, halluci-
nations and instability are closely related to the study of adversarial examples in machine
learning. For this, we refer to the seminal paper [90], a survey [101] and recent theoretical
developments [9]. Issues of generalization performance in machine learning is itself a vast
topic.
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1.2 Contributions and related work

1.2.1 The central question

Holistically, the reliability of deep learning techniques for imaging remains an ongoing de-
bate. The performance gains from deep learning show great potential to improve existing
imaging practices and technologies. However, the drawbacks of hallucinations, instability
and unpredictable generalization pose a risk when operating in a critical environment. Con-
sidering these key issues, this begs the question: can we construct deep neural networks for
compressive imaging with state-of-the-art performance guarantees? Put another way, can we
construct deep neural networks that perform the same as, or better than, state-of-the-art
model-based techniques for imaging? Will they be practical to implement or use, e.g. by
having small depth and width? These questions motivate an ongoing concerted research
effort to better design deep neural networks for imaging with robustness guarantees, and
also motivate the effort and results of this thesis.

A first comprehensive attempt to address these questions were done in [30], of which the
approach in [5, Chap. 21] is based on. In it, they present computability theoretic results for
neural networks and their instability in inverse problems. One of their main results provides
sufficient conditions to compute stable neural networks for inverse problems. To achieve
this, they consider a model class of images that are sparse in levels under the orthonormal
discrete Haar wavelet transform. Then, using arguments leveraging compressed sensing and
convex optimization, their constructed network recovers images up to an error in terms
of distance to the model class (accuracy), the measurement noise (stability), and a term
decaying exponentially in the number of network layers (efficiency). The benefit of efficiency
makes the network practical to use for fast image reconstruction. The precise network
construction, termed FIRENETs, is done by unrolling a restarted version of Chambolle and
Pock’s primal-dual iteration [26,28] configured to solve an ℓ1-minimization problem.

1.2.2 Main contributions

To summarize, the central contribution of this thesis is the explicit construction of stable,
accurate and efficient neural networks for Fourier imaging under a gradient-sparsity image
model. In particular, Fourier imaging considers measurements represented in a frequency
domain associated with the Fourier transform. To construct the network, we unroll a mod-
ified version of NESTA (dubbed stacked NESTA), a standard optimization algorithm for
ℓ1-minimization [13, 14]. To address a technicality in the recovery analysis, we state and
prove Fourier imaging recovery guarantees using a Bernoulli model for sampling. In ad-
dition, we completely derive stacked NESTA from first principles using tools from convex
optimization. In terms of contributions and discussion, we note that there is considerable
overlap with a paper we wrote [75], as it is borne out of the same research program! Adhering
to [75], we also refer to our unrolled NESTA networks as NESTANets.
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We extend the previous work [30] in two ways. First, rather than the Haar wavelet,
we consider a model class of images that are gradient-sparse, i.e. sparse under the discrete
gradient operator. Despite both yielding sparse representations for piecewise smooth images,
this extension is notable since the gradient operator is not invertible. Therefore, a more
sophisticated analysis is needed to ensure image recovery, which we adapt from [4,5]. Second,
analogous to [75], to construct the network we unroll (stacked) NESTA. We use a restart
procedure that modifies the NESTA smoothing parameter to grow the unrolled network
depth logarithmically in the desired image error.

1.2.3 Discussion on related topics

The reasons to consider Fourier imaging are twofold. The first pertains to practical impact
and relevance, where Fourier measurements for gradient-sparse imaging arise in medical
imaging, namely MRI [4,64,81]. With this, we stay close to the topic of deep learning’s im-
pact in imaging applications. The second reason is theoretical, where recovery from Fourier
measurements via compressed sensing is both well-understood and documented. As part
of the technical analysis, it is also convenient to work with both the Fourier matrix and
gradient operator.

To study recovery of gradient-sparse images, we consider a reconstruction procedure
based on TV minimization, a convex optimization problem (see Section 2.3.4) which specifies
ℓ1-minimization of the image gradient as a regularizer. TV minimization is used throughout
compressive imaging [4,20,53,64,81] and was first used for compressed sensing in [20], where
they also considered Fourier measurements. In our image recovery analysis, we take advan-
tage of a connection between the TV semi-norm and Haar wavelet coefficients that lead to
a Poincaré inequality. This idea was first used in [71,72] to show recovery of gradient-sparse
signals. To obtain recovery of both the image and its gradient, we consider a structured
sampling scheme that combines uniform random samples with variable-density samples.
This was first considered and used in [80]. Finally, many of the tools and arguments we use
to prove recovery guarantees are based on [4] and [5, Chap. 17].

As in [30], our network construction involves unrolling an optimization algorithm. Un-
rolling has been an important architectural design for neural networks in inverse problems,
yielding some of the best-performing networks. For references on the topic, a good starting
point is [67], and also [5, Chap. 21] and [8, 60, 65, 81]. It should be noted that unrolling on
its own is not sufficient to guarantee stability of deep learning techniques [37]. Prior to [75],
NESTA has not been considered in unrolling schemes.

Restart schemes are an algorithmic framework for accelerating convergence of optimiza-
tion algorithms. For example, see [3,83,85] and for restarting based on primal-dual iteration,
see [29]. In particular, our restart procedure for NESTA extends the one in [85] by consid-
ering inexact sparsity and noisy measurements, as opposed to the simpler case of exact
sparsity and exact measurements therein.
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In comparison to [75], there are novel components exclusive to the presentation here.
First, the gradient operator does not form a frame, so our image model class is not in the
scope of frame analysis operators in [75]. Second, we provide a compressed sensing analysis
of the recovery guarantees in full detail. Third, we use a Bernoulli model for sampling [5,
Sec. 11.4.3] that leads to a stacked sampling scheme compatible with an efficient, and
practical to unroll, implementation of NESTA. The implementation gives rise to a modified
version of NESTA, giving the moniker “stacked NESTA” from the stacking scheme. In
compressed sensing, Bernoulli models for sampling schemes appear in previous work, e.g.
[20, 80,84,91]. To the best of our knowledge, we are the first to consider a Bernoulli model
for variable density sampling in Fourier imaging, moreover with inexact sparsity and noisy
measurements. Fourth, we provide a complete derivation of stacked NESTA, including a
rigorous translation of the algorithm over real-valued data to complex values. All these
topics include technical discussion of related work and practical considerations. Lastly, the
experiments are updated to give more insight on discussion lacking in [75], such as parameter
tuning of δ and the choice of decay factor r.

1.3 Main results

To the state the main result, we need to introduce some notation. For brevity, we defer
explicit definitions of some items (e.g. the Fourier matrix) to subsequent chapters. Let
JMK = {1, . . . , M} and for vector u = (ui)M

i=1 ∈ CM , denote uS as the vector with ith entry
equal to ui if i ∈ S and zero otherwise.

We say a vector is s-sparse if at most s of its entries are nonzero. In practice, images are
often only approximately sparse under a specific transformation. Let us make this notion
precise. The ℓ1-norm best s-term approximation error of z ∈ CM is the number

σs(z)ℓ1 = min
{
∥z − uS∥ℓ1 : u ∈ CM , S ⊆ JMK, |S| ≤ s

}
.

Observe that the minimization effectively is taken over the set of s-sparse vectors, and the
minima are uniquely determined by taking the s largest components of z in absolute value.
Intuitively, z is approximately s-sparse provided that σs(z)ℓ1 is sufficiently small.

Now we define relevant vectors and matrices. The d-dimensional images considered are
expressed as vectors x ∈ CNd . Let F ∈ CNd×Nd denote the d-dimensional Fourier matrix
and V ∈ RdNd×Nd denote the d-dimensional discrete gradient operator. For their definitions,
see Sections 2.3.2 and 2.3.4. To express subsampling rows, let {ei}Ni=1 denote the standard
basis of CN , and Ω ⊆ JNK a set of indices. We denote PΩ ∈ CN×N as the orthogonal
projection onto the linear span of {ei : i ∈ Ω}. Namely, for x = (xi)N

i=1 ∈ CN , the jth entry
of PΩx is equal to xj if j ∈ Ω, and zero otherwise. We occasionally consider the |Ω| × N

matrix formed from the nonzero rows of PΩ. Abusing notation, we continue to write such
a matrix as PΩ.
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Now we define the model class of Fourier measurements we seek to recover from gradient-
sparse images. Fix d ≥ 1, η > 0, 1 ≤ s ≤ Nd and define

CSs,d(V x, η) = σs(V x)ℓ1√
s

+
(

d +
√

log(N)
)

η.

Given χ > 0, we write

I = IV ,χ,η =
{

(x, e) ∈ CNd × Cm : ∥x∥ℓ2 ≤ 1, ∥e∥ℓ2 ≤ η, CSs,d(V x, η) ≤ χ
}

,

and define the class of measurements

M = MA,V ,χ,η = {y = Ax + e ∈ Cm : (x, e) ∈ IV ,χ,η} . (1.3.1)

The interpretation of M is that it defines noisy measurement vectors y = Ax + e from
images x ∈ CNd that are approximately gradient-sparse, i.e. σs(V x)ℓ1/

√
s ≤ χ, and noise

vectors e with bounded ℓ2-norm, i.e. ∥e∥ℓ2 ≤ η ≤ χ.
Finally, we use the notation O(·) and Od(·) to both refer to standard big-O notation,

except the latter indicates that the constant factor depends on d. With this, we can state
the main result of the thesis.

Theorem 1.3.1 (Stable, accurate and efficient neural networks for Fourier imaging). Let
d ≥ 1, 0 < ϵ < 1, 2 ≤ s, m ≤ Nd, and A = 1√

m
PΩF ∈ C|Ω|×Nd be a subsampled d-

dimensional Fourier matrix with sampling mask Ω. Suppose η ≥ 0 and χ > 0 and consider
the class M = MA,V ,χ,η. Then for a suitable random sampling scheme defining Ω with
E(|Ω|) ≍ m, the following holds with probability at least 1− ϵ, provided that

m ≳d s · polylog(N, s, ϵ−1).

For every k ≥ 1, one can construct a neural network N : C|Ω| → CNd (NESTANet) such
that for all y = Ax + e ∈M, we have

∥x−N (y)∥ℓ2 ≲d χ + e−k, d ≥ 2,

and

∥x−N (y)∥ℓ2√
N

≲ χ + e−k, d = 1.

In both cases, i.e. d ≥ 1, the network depth is Od

(√
Nd

s · k
)

and the width is O
(
dNd

)
.

For ease of presentation, both descriptions of the sampling scheme and NESTANet ar-
chitecture are omitted. Their constructions are provided in Chapters 3 and 5, respectively.
The precise technical version of the above theorem is given in Theorems 5.3.1 and 5.3.2, to-
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gether with their proofs. Each correspond to separate cases of d = 1 and d ≥ 2, respectively.
Note that we also abused notation in Theorem 1.3.1 when defining the subsampled Fourier
matrix A, since the frequencies indexed by Ω are actually sampled exactly twice. That be-
ing said, there are several points to mention about Theorem 1.3.1, which by extension also
apply to Theorems 5.3.1 and 5.3.2.

First, the error bound tells us that the image reconstruction is guaranteed to be within
an error proportional to χ and a term decaying exponentially in k. Choosing k = ⌈|log(χ)|⌉
yields a network that can perform image reconstruction within an error proportional to
the desired error χ. This is the efficiency of our network construction, where to guarantee
reconstruction within error proportional to χ, the network depth should scale logarithmically
in χ. This is precisely analogous to [30, Thm. 4] and [75, Thm. 1]. Moreover, we remark
that the network construction in [30, Thm. 3] has a depth proportional to np layers, where
n is the restart number and p ∝ ∥A∥ℓ2 . This is comparable to the number of layers we
use. To see how, if A ∈ Cm×Nd has the restricted isometry property, a condition frequently
used to construct measurements matrices in compressed sensing, then ∥A∥ℓ2 ≲

√
Nd/s

by [5, Rem. 8.8]. The same can be said of the NESTANets in [75].

1.4 Outline

The thesis is organized as follows. In Chapter 2, we provide background definitions and
notation needed to navigate the thesis. Chapter 3 is a technical chapter specifying and
proving the sufficient conditions needed to reconstruct images from subsampled Fourier
measurements. From here, we lead into Chapter 4 which provides a complete derivation of
stacked NESTA for Fourier imaging via TV minimization. In addition, we prove associated
recovery guarantees for the iterates of NESTA. The resulting recovery properties inform a
restart procedure for NESTA, which we show theoretically accelerates image reconstruction.
Next, in Chapter 5 we detail the construction of NESTANets (unrolled stacked NESTA) and
prove the main result. Chapter 6 showcases the numerical experiments with NESTANets
in the setting of a 2-D Fourier imaging task. Much of these experiments are designed to
verify or reflect our findings, and offer insight to bridge any potential gap between theory
and practice. Finally, we conclude in Chapter 7 by summarizing key aspects of the thesis
and offer ideas for future work.
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Chapter 2

Background and preliminaries

In this chapter, we provide the necessary terminology, notation, and background needed
to navigate most of this thesis. The topics discussed include compressed sensing and its
relation to inverse problems, convex optimization, Fourier imaging and TV minimization.
The reader interested in any of these topics can refer to the citations provided here and in
Chapter 1.

2.1 Compressed sensing for inverse problems

The types of inverse problems we consider are discrete linear inverse problems, taking the
form

Given measurements y = Ax + e ∈ Cm and ∥e∥ℓ2 ≤ η, recover x ∈ CN . (2.1.1)

Here A ∈ Cm×N is the measurement (or forward) matrix, e ∈ Cm is a noise vector, and
η > 0 is the noise level, a parameter bounding the ℓ2-norm of the noise e. We assume
m≪ N , so one has a highly underdetermined linear system with noise, making the general
problem of recovering x ill-posed. The way we go about establishing recovery guarantees
for (2.1.1) is leveraging compressed sensing theory [5, 35]. For this, we need to introduce
several definitions and notation. Some of these were already introduced in Section 1.3, but
we include them here for completeness.

Let JMK = {1, . . . , M} and for vector u = (ui)M
i=1 ∈ CM , denote uS as the vector with

ith entry equal to ui if i ∈ S and zero otherwise. We say a vector is s-sparse if at most s

of its entries are nonzero. The notion of approximate sparsity is captured in the following
definition.

Definition 2.1.1 (Best s-term approximation error). The ℓ1-norm best s-term approxima-
tion error of z ∈ CM is the number

σs(z)ℓ1 = min
{
∥z − uS∥ℓ1 : u ∈ CM , S ⊆ JMK, |S| ≤ s

}
.
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♢

The minimization is effectively taken over the set of s-sparse vectors, hence σs(z)ℓ1 =
∥z − zS∥ℓ1 where S are indices of the s largest components of z in absolute value. Also,
σs(z)ℓ1 = 0 whenever z is s-sparse. We consider solutions of (2.1.1) where the vector
W ∗x ∈ CM is approximately sparse, i.e. σs(W ∗x)ℓ1 is sufficiently small for some W ∈
CN×M . The matrix W is dubbed the analysis matrix, and we refer to such solutions x

as being approximately analysis-sparse with respect to analysis matrix W . Two prevalent
examples of W used in imaging are discrete wavelet transforms and the discrete gradient
operator [5].

We now state standard definitions from compressed sensing used to prove recovery guar-
antees.

Definition 2.1.2 (Robust null space property [5, Defn. 5.14]). The matrix A ∈ Cm×N

satisfies the robust Null Space Property (rNSP) with constants 0 < ρ < 1 and γ > 0 if

∥vS∥ℓ2 ≤
ρ√
s
∥vS∁∥ℓ1 + γ∥Av∥ℓ2 ,

for all v ∈ CN and S ⊆ JNK with |S| ≤ s. ♢

The intuition behind the rNSP condition is that it ensures the difference of two approxi-
mately sparse vectors is not close to the null space of A (see e.g. [5, Chap. 5]). This provides
a notion of well-posedness when recovering an approximately sparse signal, informed by the
following general inequalities.

Lemma 2.1.3 (rNSP implies ℓ1 and ℓ2 distance bounds [5, Lem. 5.15, 5.16]). Suppose that
A ∈ Cm×N has the rNSP of order s with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CN .
Then

∥z − x∥ℓ1 ≤
1 + ρ

1− ρ
(2σs(x)ℓ1 + ∥z∥ℓ1 − ∥x∥ℓ1) + 2γ

1− ρ

√
s∥A(z − x)∥ℓ2 ,

and

∥z − x∥ℓ2 ≤
(3ρ + 1)(ρ + 1)

2(1− ρ)

(2σs(x)ℓ1 + ∥z∥ℓ1 − ∥x∥ℓ1√
s

)
+ (3ρ + 5)γ

2(1− ρ) ∥A(z − x)∥ℓ2 .

In practice, it is difficult to show matrices have the rNSP. A related stronger condition
implying the rNSP is often used instead.

Definition 2.1.4 (Restricted isometry property (RIP) [5, Defn. 5.18]). Let 1 ≤ s ≤ N .
The sth Restricted Isometry Constant (RIC) δs of a matrix A ∈ Cm×N is the smallest δ ≥ 0
such that

(1− δ)∥vS∥2ℓ2 ≤ ∥AvS∥2ℓ2 ≤ (1 + δ)∥vS∥2ℓ2 ,
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for all v ∈ CN and S ⊆ JNK with |S| ≤ s. If 0 < δs < 1 then A is said to have the Restricted
Isometry Property (RIP) of order s. ♢

Lemma 2.1.5 (RIP implies rNSP [5, Lem. 5.20]). Suppose that A ∈ Cm×N satisfies the
RIP of order 2s with constant δ2s <

√
2 − 1. Then A satisfies the rNSP of order s with

constants
ρ =

√
2δ2s

1− δ2s
, γ =

√
1 + δ2s

1− δ2s
.

We note there are many variations of the RIC condition δ2s <
√

2− 1 in Lemma 2.1.5,
e.g. see the Notes sections of [5, Chap. 5] and [35, Chap. 6]. The references therein sometimes
go from the RIP directly to sparse recovery, rather than using the rNSP as an intermediary
step.

This concludes the basic tools and terminology needed to study recovery guarantees
for inverse problems with analysis sparsity. The next key step is to consider the problem
formulation for solving (2.1.1) via computational methods.

2.2 Sparse recovery via convex optimization

To compute a solution to the inverse problem (2.1.1), we formulate and solve the constrained
convex optimization problem

min
z∈CN

∥W ∗z∥ℓ1 subject to ∥y −Az∥ℓ2 ≤ η. (2.2.1)

We refer to (2.2.1) as Quadratically Constrained Basis Pursuit (QCBP). QCBP is a standard
problem formulation of sparse recovery, where ℓ1-norm minimization is known to promote
sparse solutions [5, Sec. 5.4] (in this case, sparse in the analysis domain) and the constraint
directly encodes our noise assumption ∥e∥ℓ2 ≤ η.

The QCBP problem cast in (2.2.1) is typically known as the analysis problem or for-
mulation. This is distinguished from the synthesis formulation, which is defined by

min
c∈CM

∥c∥ℓ1 subject to ∥y −AW c∥ℓ2 ≤ η.

The analysis problem optimizes over the signal domain whereas the synthesis problem op-
timizes over the analysis domain. Both formulations are generally not equivalent. Since we
model gradient-sparse signals by considering W ∗ as the discrete gradient operator, we con-
sider the analysis formulation in this thesis. An in-depth look at the differences between
analysis and synthesis can be found in [34,70].

To ensure recovery of x, one standard condition is to consider analysis matrices W

whose columns form a frame of CN . This holds if there exist constants β ≥ α > 0 such that

α∥x∥2ℓ2 ≤ ∥W ∗x∥2ℓ2 ≤ β∥x∥2ℓ2 .
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This is a central assumption to the theoretical development of NESTANets in [75]. The
assumption also appeals to the interest and use of frames throughout compressive imaging
and sensing, e.g. wavelet frames [33], curvelets [21–23] and shearlets [39,40,55,56]. Observe
that a necessary condition for the columns of W forming a frame is M ≥ N and W is full
rank. The optimal values of α and β depend on the minimum and maximum singular values
of W , respectively, via α = (σN (W ))2 and β = (σ1(W ))2 = ∥W ∥2ℓ2 . When the columns of
W do not form a frame, a more sophisticated analysis is needed to guarantee recovery of x.
We do this in the context of Fourier inverse problems and TV minimization in Chapter 3,
being one of our main contributions in this thesis. TV minimization refers to (2.2.1) when
W ∗ is the discrete gradient operator. In this case, W does not form a frame since it is
not a full rank matrix. Fourier inverse problems, the discrete gradient operator, and TV
minimization are the topics of the next two sections.

To solve QCBP problems we use an adaptation of NESTerov’s Algorithm (NESTA), an
accelerated projected gradient method with smoothing [13, 14, 73]. Explicitly defining our
version of NESTA, deriving it, and proving error bounds is the primary topic of Section 4.1.
As discussed in Section 1.2.3, the use of NESTA for unrolling is unexplored. Many of the
developments throughout this thesis can proceed with other optimization algorithms, as has
been done several times with Chambolle and Pock’s primal-dual iteration [2, 29,30].

2.3 Fourier imaging

The main problem we tackle throughout this thesis pertains to Fourier imaging. Fourier
measurements are a popular model for several imaging modalities, such as Magnetic Reso-
nance Imaging (MRI) [5, 64, 81], Nuclear Magnetic Resonance (NMR) [45, 50], radio inter-
ferometry [98] and Helium Atom Scattering (HAS) [49]. Here the inverse problem (2.1.1) is
cast with A being a randomly subsampled discrete Fourier transform. The vector x being
recovered is a vectorized version of the image. For theoretical results, we present them and
their proofs in terms of general d-dimensional images. For this, it is convenient to adopt the
notation and definitions from [4, Sec. 2].

2.3.1 Tensors

A d-dimensional complex image X is the d-dimensional tensor

X = (Xi1,...,id
)N
i1,...,id=1

where the entries are in C. It is mathematically useful to reshape (or vectorize) X into
a vector. This can be done using a lexicographical ordering, where given a bijection ς :
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{1, . . . , Nd} → {1, . . . , N}d, the ordering is then defined by the inverse mapping

ς−1(i1, . . . , id) = 1 +
d∑

j=1
Nd−j(ij − 1), (i1, . . . , id) ∈ {1, . . . , N}d.

With this, we denote the vectorization of X as x = vec(X) ∈ CNd , where the ith entry
of x is Xς(i). The lexicographical ordering we defined above is sometimes referred to as
column-major order. From this point on, we avoid the use tensors to express images and
generally refer to their vectorization.

2.3.2 Discrete Fourier transform

Throughout this thesis, whenever the discrete Fourier transform arises it is assumed that
N is a power of two, i.e. N = 2R for some positive integer R. Now, given the bijection
ϱ : {1, . . . , N} → {−N/2 + 1, . . . , N/2} defined by i 7→ (−1)i⌊i/2⌋, we define the one-
dimensional discrete Fourier transform (DFT) as the matrix F ∈ CN×N with entries

(F )ij = exp(−2πiϱ(i)(j − 1)/N), i, j ∈ JNK.

The d-dimensional DFT F (d) ∈ CNd×Nd is given by

F (d) = F ⊗ · · · ⊗ F︸ ︷︷ ︸
d times

,

where ⊗ is the Kronecker product. Throughout we abuse notation and write F = F (d),
where the dimension is inferred from context. Note that we have F F ∗ = F ∗F = NdI.

The range of F naturally corresponds to images represented in frequency space. Us-
ing the bijection ϱ, we can associate the d-dimensional Fourier matrix row indices with
frequencies using the bijection

ϱ(d) : {1, . . . , Nd} → {−N/2 + 1, . . . , N/2}d,

ϱ(d)(i) = (ϱ(ς(i)1), . . . , ϱ(ς(i)d)) , i ∈ {1, . . . , Nd}.

In similar fashion to [4], when we visualize sampling masks, we shift the zero-frequency
component of the discrete Fourier transform to the centre.

2.3.3 Sampling rows of a matrix

In Fourier imaging, we subsample rows of F to form a measurement matrix. Let us introduce
notation convenient for this. Let {ei}Ni=1 denote the standard basis of CN , and Ω ⊆ JNK a
set of indices. We denote PΩ ∈ CN×N as the orthogonal projection onto the linear span of
{ei : i ∈ Ω}. Namely, for x = (xi)N

i=1 ∈ CN , the jth entry of PΩx is equal to xj if j ∈ Ω,
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and zero otherwise. Observe that PΩ is a diagonal matrix with ith diagonal entry equal to
one if i ∈ Ω, and zero otherwise. Abusing notation, we sometimes consider the fat matrix
PΩ ∈ C|Ω|×N where the rows corresponding to a zero diagonal entry have been removed.
Thus, in d dimensions with Ω ⊆ JNdK, our measurement matrices have the form

A = cPΩF ∈ C|Ω|×Nd
,

where c is some normalizing constant.

2.3.4 Gradient operators and TV minimization

The one-dimensional discrete gradient operator of CN is the circulant matrix defined by

V =



−1 1
−1 1

. . . . . .
−1 1

1 −1


∈ CN×N .

A signal processing interpretation of this matrix is that it acts as a convolution on a signal
x with kernel (−1, 1) and a periodic boundary condition. By virtue of being circulant, the
Fourier matrix will diagonalize V . Mathematically, this will be convenient in our recovery
guarantees analysis.

To generalize V to vectorized d-dimensional tensors, we define the jth partial derivative
operator, denoted by Vj ∈ CNd×Nd for 1 ≤ j ≤ d, by

Vj = I ⊗ · · · ⊗ I︸ ︷︷ ︸
d − j times

⊗V ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
j − 1 times

,

where I is the N×N identity matrix and ⊗ is the Kronecker product. Given a d-dimensional
tensor X, Vj acts on vec(X) by broadcasting the one-dimensional discrete gradient operator
along dimension j of X.

The (anisotropic) d-dimensional discrete gradient operator of CNd is defined as the block
matrix

V (d) =


V1
...

Vd

 ∈ RdNd×Nd
.

Sometimes we abuse notation and write V = V (d), where the dimension is inferred from
context. Now, the d-dimensional (anisotropic) Total Variation (TV) semi-norm ∥·∥TV :
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CNd → R+ is given by

∥x∥TV = ∥V x∥ℓ1 , ∀x ∈ CNd
. (2.3.1)

This allows us to define the d-dimensional TV minimization problem

min
z∈CNd

∥z∥TV subject to ∥y −Az∥ℓ2 ≤ η. (2.3.2)

Observe that TV minimization is a special case of (2.2.1) where W = V ⊤ ∈ RNd×dNd is
the analysis matrix. In addition, V is not full rank since any nonzero constant vector is in
the null space of V , so the columns of V ⊤ do not form a frame for CdNd .

Lastly, for some historical background, we remark that TV minimization is used ex-
tensively in image processing [25, 27] and compressive imaging [4, 53, 64, 81]. It should also
be noted that there are other ways to define the TV semi-norm apart from (2.3.1). For
example, many of our results extend to the isotropic TV semi-norm [4, Sec. 2.5], which we
omit from our analysis for simplicity. Nonperiodic discrete gradient transforms [54, 71, 72]
can also be considered, however our analysis relies on periodicity.
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Chapter 3

Bernoulli model for random
sampling schemes

We dedicate much of this chapter to proving some key lemmas, which we use to establish
image and gradient recovery guarantees in Fourier imaging. The techniques and tools we
use are adapted from the work and discussion found in [4, 5]. In our analysis, we consider
a Bernoulli model for sampling rows of unitary matrices, which helps give us an efficient
unrolling of NESTA. Moreover, we aim to show that for an appropriate sampling scheme,
the Fourier matrix and diagonal-scaled Fourier-Haar matrix satisfy the RIP with high prob-
ability. The former will be sufficient to recover the gradient, and the latter will be sufficient
to recover the image. Finally, we end the chapter by discussing the stacked sampling scheme.
The scheme combines uniform and variable density samples, which is necessary to obtain
both image and gradient recovery, but leads to a measurement matrix that cannot be imme-
diately used with NESTA. This motivates Chapter 4, where we derive a novel modification
of NESTA, named stacked NESTA, that is compatible with the stacking scheme.

3.1 Motivation and terminology

3.1.1 Bernoulli model

Deriving the update formulas for NESTA involves computing projections onto a constraint
set. For QCBP (2.2.1), the measurement matrix A needs to have special properties for
fast and exact calculation of the projection. One solution is to assume the rows of A are
orthonormal up to a constant factor, i.e. AA∗ = cI [13], so A∗A is an orthogonal projection
matrix. Such an assumption is reasonable when considering measurements obtained using
subsampled unitary matrices, which are common in compressed sensing. Two prevalent
examples are the Walsh-Hadamard transform and, in our case, the discrete Fourier transform
[4]. In terms of mathematical analysis, it is desirable for the rows of the measurement matrix
to be independent. This is straightforward to achieve when randomly subsampling rows
independently with replacement. However, A could then easily violate the aforementioned
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orthogonality condition. We can avoid this issue by using a Bernoulli model sampling scheme
[5, Sec. 11.4.3] (see also [20, 80, 84, 91]). In such a scheme, each row of a given unitary
matrix undergoes an independent Bernoulli trial to determine whether or not it is included
in the measurement matrix. By construction, the scheme samples independently without
replacement and thus enforces AA∗ = cI. Let us make this precise.

Definition 3.1.1 (Bernoulli sampling scheme). Let 1 ≤ m ≤ N . A Bernoulli variable
density sampling scheme of order m is a random subset Ω ⊆ JNK where each j ∈ JNK
is sampled independently, so that j ∈ Ω with probability pj (and j /∈ Ω with probability
1− pj), and

N∑
i=1

pi = m, 0 < pj ≤ 1, ∀j ∈ JNK.

We refer to p = (pi)N
i=1 as a Bernoulli vector of order m and indicate such a random set Ω

by Ω ∼ Ber(JNK, m, p). In the special case that pi = m/N for all i ∈ JNK, we refer to Ω as a
Bernoulli uniform sampling scheme of order m and use the notation Ω ∼ Ber(JNK, m). ♢

Observe that unlike in random sampling schemes where indices are independently sam-
pled with replacement, the cardinality of Ω ∼ Ber(JNK, m, p) is now a random variable
equal to m in expectation. Later in Section 3.2.4 we show that |Ω| is close to m with high
probability.

3.1.2 Jointly isotropic sampling operators

To prove recovery guarantees for Fourier imaging with Bernoulli sampling schemes, we need
additional terminology from compressed sensing theory. The first is the notion of jointly
isotropic collections, a formalism used to describe sampling operators based on families of
random vectors. This specifies a very general way to construct measurement matrices that
satisfy the RIP with high probability. Sampling from (isotropic) families of random vectors
was first considered in [24], and the extension to collections is due to [1].

Definition 3.1.2 (Joint isotropy condition [5, Defn. 11.4]). Let A1, . . . ,Am be independent
families of random vectors on CN . The collection C = {Ai}mi=1 is jointly isotropic if

1
m

m∑
i=1

EAi
(aia

∗
i ) = I

where ai ∼ Ai for i = 1, . . . , m. ♢
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The sampling operator corresponding to a collection C = {Ai}mi=1 samples each family
Ai independently, where the associated measurement matrix is defined by

A = 1√
m


a∗

1
...

a∗
m

 ∈ Cm×N , ai ∼ Ai, i = 1, . . . , m. (3.1.1)

Thus the joint isotropy condition asserts that E(A∗A) = I, and so A preserves distances
and angles in expectation, i.e.

E
(
∥Ax∥2ℓ2

)
= ∥x∥2ℓ2 , E(x∗A∗Az) = x∗z, ∀x, z ∈ CN .

Note the relation with the RIP, which specifies a matrix approximately preserving distances
for sparse vectors with high probability. As we describe below, measurement matrices arising
from jointly isotropic collections can be shown to satisfy the RIP with high probability.

Bernoulli sampling as a collection of independent families of random vectors is expressed
as follows. We specify the collection by each family having exactly two vectors, a nonzero
vector (e.g. the row of a given matrix) and the zero vector. Each family is then assigned a
Bernoulli distribution over its vectors with probability parameters defined by the Bernoulli
vector from Definition 3.1.1. Let us state this for sampling rows of a unitary matrix with the
Bernoulli model, noting the rows must be rescaled to ensure the joint isotropy condition.

Proposition 3.1.3. Let U ∈ CN×N be a unitary matrix and ui = U∗ei denote the ith
row of U as a column vector. Let p = (pi)N

i=1 be a Bernoulli vector of order m. For each
i ∈ JNK, let Ai be the family of two vectors

√
N/piui and the zero vector, and for ai ∼ Ai,

define

P
(

ai =
√

N

pi
ui

)
= pi, P(ai = 0) = 1− pi.

Then the collection C = {Ai}Ni=1 is jointly isotropic.

Proof. Since p has no zero entries, we have

1
N

N∑
i=1

EAi
(aia

∗
i ) = 1

N

N∑
i=1

pi
N

pi
uiu

∗
i =

N∑
i=1

uiu
∗
i = U∗U = I.

This verifies that C is jointly isotropic using Definition 3.1.2.

In terms of a sampling operator, each row of U is sampled at most once, and row i is
included with probability pi. Using (3.1.1), the Bernoulli model sampling operator leads to
a measurement matrix of size N ×N , with m nonzero rows in expectation. For convenience
and without loss of generality, we always ignore the zero rows of the measurement matrix.
This gives a matrix of size |Ω| ×N for Ω ∼ Ber(JNK, m, p) with E(|Ω|) = m.
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3.1.3 RIP matrices from joint isotropy

Note that we allow the possibility of pi = 1, so we can have deterministic samples in the
Bernoulli model. If pi = 1, then Ai is said to be a singleton family with |Ai| = 1. More
generally, a jointly isotropic collection C = {Ai}mi=1 has saturation m̃ with 0 ≤ m̃ ≤ m,
if exactly m̃ families of C are singleton families [5, Defn. 11.12]. If m̃ = 0, we say C is
unsaturated. Saturation affects the measure of coherence of a jointly isotropic collection. The
concept of coherence plays a role in qualitatively determining the number of measurements
needed for the RIP for recovery.

Definition 3.1.4 (Coherence [5, Defn. 11.16, 11.17]). Let A be a family of at least two
random vectors. The coherence of A, denoted by µ(A), is the smallest constant such that
∥a∥2ℓ∞ ≤ µ(A) almost surely for a ∼ A. The coherence of a collection C = {Ai}mi=1 is defined
as

µ(C) = max {µ(Ai) : i = 1, . . . , m, |Ai| ≥ 2} .

♢

By excluding singleton families from the definition of coherence, deterministic samples
are omitted from the measure of coherence. More broadly, they do not play a role in the
analysis of recovery guarantees.

Remark 3.1.5. For the results throughout this chapter, many of them hold trivially in the
fully saturated case, i.e. m = Nd. For ease of exposition, our proofs throughout the chapter
always assume that m < Nd, but note that the results also hold when m = Nd. ♢

Finally, we end the section by connecting the previous concepts by stating a key result
we use for recovery guarantees. Namely, it says that given a jointly isotropic collection,
under certain conditions, its associated measurement matrix (3.1.1) satisfies the RIP with
some (high) probability. Specifically, the condition needed relates the number of families in
the collection with its coherence. Its proof can be found in the corresponding citation.

Lemma 3.1.6 (Joint isotropy implies RIP, [5, Cor. 13.15] with G = I). Let 0 < ϵ < 1,
2 ≤ s ≤ N , C = {Ai}mi=1 be a jointly isotropic collection, and A be as in (3.1.1). Suppose
that

m ≳ δ−2 · µ(C) · s ·
(
log(2(µ(C)s + 1)) · log2(s) · log(N) + log(ϵ−1)

)
, (3.1.2)

where µ(C) is defined in Definition 3.1.4. Then with probability at least 1 − ϵ, A has the
RIP of order s with constant δs ≤ δ.

Note this result is not beneficial for compressive imaging when µ(C) = O(N), since that
would mean the number of measurements m needs to be proportional to the image size N .
To reap any benefits in the undersampled setting, it is important to construct collections
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that are incoherent, i.e. where µ(C) is either independent of N or logarithmically growing
in N .

3.2 Compressed sensing theory

In this section, we develop the machinery needed to ensure gradient and image recovery
from Fourier measurements via TV minimization (2.3.2). To reconstruct the gradient of the
image, it is sufficient for a subsampled Fourier matrix to satisfy the RIP. This is achieved
by using a uniform sampling pattern. To reconstruct the image itself, it is sufficient for a
subsampled diagonal-scaled Fourier-Haar matrix to satisfy the RIP. This is achieved effec-
tively with a certain nonuniform sampling pattern. The Haar matrix, i.e. the discrete Haar
wavelet transform, is introduced to exploit a connection between Haar wavelet coefficients
and the TV semi-norm ∥·∥TV. This idea first appeared in [71,72] to show accurate and stable
recovery via TV minimization. The consideration of using both uniform and nonuniform
sampling patterns for Fourier imaging is due to [80].

3.2.1 Recovery guarantees with Fourier measurements

Here we show that a Bernoulli uniform sampling scheme is sufficient to ensure the sub-
sampled Fourier matrix has the RIP. This is leveraged in Section 4.2 to recover the image
gradient via TV minimization (2.3.2). Let C = {Ai}N

d

i=1 be the jointly isotropic collection
in Proposition 3.1.3 corresponding to Ber(JNdK, m) with unitary matrix U = N−d/2F . In
particular, for ai ∼ Ai we have

P
(

ai = Nd

√
m

ui

)
= mN−d, P(ai = 0) = 1−mN−d.

For m < Nd (where C is not fully saturated) we have

µ(C) = max
i=1,...,Nd

µ(Ai) = Nd

m
· max

i=1,...,Nd
Nd∥ui∥2ℓ∞ = Nd

m
· max

i=1,...,Nd
∥fi∥2ℓ∞ = Nd

m
.

Here fi denotes the ith row of the Fourier matrix F . The entries of F lie on the unit circle
in C, and from its definition, it follows that maxi=1,...,Nd ∥fi∥ℓ∞ = 1. Now define the random
matrix A corresponding to C by

A = 1√
Nd


a∗

i
...

a∗
Nd

 ∈ CNd×Nd
,
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where ai ∼ Ai independently for all i. Equivalently, we can write

A = 1√
m

PΩF , Ω ∼ Ber(JNdK, m),

where sampling an independent realization of A yields our measurement matrix.

Lemma 3.2.1 (RIP for Bernoulli uniform subsampled Fourier matrix). Let δ > 0, 0 < ϵ <

1, d ≥ 1, 2 ≤ s ≤ Nd, 1 ≤ m < Nd and Ω ∼ Ber(JNdK, m). Suppose A = m−1/2PΩF where
F is the d-dimensional Fourier matrix. If

m ≳d δ−2 · s ·
(
log(Ns) · log2(s) · log(N) + log(ϵ−1)

)
, (3.2.1)

then with probability at least 1− ϵ, A has the RIP of order s with constant δs ≤ δ.

Proof. First, the collection C defining A above is jointly isotropic by Proposition 3.1.3. Then
by Lemma 3.1.6 where µ(C) = Ndm−1, if

Nd ≳ δ−2 · Nd

m
· s ·

(
log

(
2
(
Ndm−1s + 1

))
· log2(s) · log(Nd) + log(ϵ−1)

)
(3.2.2)

then with probability at least 1 − ϵ, A has the RIP of order s with constant δs ≤ δ.
Multiplying both sides of the inequality by mN−d gives

m ≳ δ−2 · s ·
(
log

(
2(Ndm−1s + 1)

)
log2(s) · log(Nd) + log(ϵ−1)

)
.

Now, using the bound

log
(
2
(
Ndm−1s + 1

))
≤ log(4Nds) ≤ 2 log(Nds),

which holds since 2 ≤ s ≤ Nd and m ≥ 1, and factoring out d from any log terms containing
Nd yields the condition (3.2.1). This condition implies (3.2.2), which gives the result.

3.2.2 Recovery guarantees with Fourier-Haar measurements

Here we adopt the notation and definitions found in [4, Section 3.2]. Consider a Bernoulli
variable density sampling scheme with probabilities p = (pi)Nd

i=1. Let

ς : {1, . . . , Nd} → {1, . . . , N}d

be the lexicographical ordering described in Section 2.3.1 and

ϱ(d) : {1, . . . , Nd} → {−N/2 + 1, . . . , N/2}d
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be the row-to-frequency bijection described in Section 2.3.2. Thus for each i, the probability
pi corresponds to the probability of including frequency ω = ϱ(d)(i). For convenience, we
abuse notation and write pω := p(ϱ(d))−1(ω).

Now for ω ∈ R, denote ω = max{|ω|, 1}. Moreover, if ω = (ω1, . . . , ωd) ∈ Rd, let
π : {1, . . . , d} → {1, . . . , d} be a bijection such that

ωπ(1) ≥ ωπ(2) ≥ · · · ≥ ωπ(d).

In addition, set

qω =

ωπ(1) · · ·ωπ(d/2) d even

ωπ(1) · · ·ωπ((d−1)/2)
√

ωπ((d+1)/2) d odd
.

Lastly, let Γ(p) be the smallest positive constant such that

q−2
ω ≤ Γ(p)pω

m
, ∀ω ∈ {−N/2 + 1, . . . , N/2}d, pω < 1.

For the trivial case consisting of pω = 1 for all ω, we define Γ(p) = 0. Observe that Γ(p) is
defined only in terms of frequencies that are not deterministically sampled. Ultimately, the
purpose of Γ(p) will be to bound the coherence of the jointly isotropic collection associated
with Bernoulli variable density sampling.

Remark 3.2.2. Similar to the observation in [4, Sec. 3.2], for m < Nd we can show that
Γ(p) > 1 for any Bernoulli vector p of order m with Nd entries. We point out that for our
argument to hold, it is enough for N to be even instead of a power of two.

Observe that one always has Γ(p) > 2dmN−d whenever pω < 1 for at least one frequency
ω. Consequently, if m ≥ (N/2)d, then Γ(p) > 1. Otherwise if m < (N/2)d, then note that
there are at most m deterministic samples, so we always have |{ω : pω < 1}| ≥ Nd −m.
Moreover, qω ≤ (N/2)d/2 for all ω. Therefore

Γ(p) ≥
∑

ω:pω<1

Γ(p)pω

m
≥

∑
ω:pω<1

q−2
ω ≥ Nd −m

(N/2)d
= 2d − m

(N/2)d
.

Since m < (N/2)d, we conclude Γ(p) > 2d − 1 ≥ 1. ♢

Let U be the unitary matrix given by U = N−d/2F W , where W = W (d) is the
d-dimensional discrete (orthonormal) Haar wavelet transform as in [4, Sec. SM2.1]. Now
let C = {Ai}N

d

i=1 be the jointly isotropic collection in Proposition 3.1.3 corresponding to
Ber(JNdK, m, p). We have ai ∼ Ai where

P

ai =
√

Nd

pi
ui

 = pi, P(ai = 0) = 1− pi,
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with ui corresponding to the ith row of U . Considering the nontrivial case m < Nd (where
C is not fully saturated), the coherence of C is given by

µ(C) = max
i:|Ai|≥2

µ(Ai) = Nd · max
i:pi<1

∥ui∥2ℓ∞

pi
.

We now claim
µ(C) ≲d

Nd

m
· Γ(p).

To show this, we adapt the proof of [4, Lem. 7.5]. First write p̃ = p/m, which has entries
p̃i = pi/m, i ∈ JNdK. This normalizes p to a new vector p̃ belonging to the standard simplex,
which is a property of the vector p in [4, Lem. 7.5]. Thus

µ(C) = Nd

m
· max

i:p̃i<1/m

∥ui∥2ℓ∞

p̃i
.

Then when deriving [4, Eq. 7.6], we can restrict which frequencies to maximize over in the
definition of Θ [4, Sec. SM1.2] and its upper bound, and still have the resulting inequality
hold. This gives

max
i:p̃i<1/m

∥ui∥ℓ∞√
p̃i

≲d max
ω=(ω1,...,ωd)

p̃ω<1/m

max
j=0,...,R−1

{
1√
p̃ω

d∏
i=1

2j/2

max{ωi, 2j}

}
,

where R is the positive integer exponent for which N = 2R. Following the rest of the proof
in the same fashion, until the last equation line, gives

max
i:p̃i<1/m

∥ui∥ℓ∞√
p̃i

≲d max
ω=(ω1,...,ωd)

p̃ω<1/m

{ 1
qω
√

p̃ω

}
= max

ω=(ω1,...,ωd)
pω<1

{
1

qω

√
pω/m

}
≤
√

Γ(p)

where the last inequality follows from the definition of Γ(p). We summarize this in a lemma.

Lemma 3.2.3. Let C = {Ai}N
d

i=1 be the jointly isotropic collection in Proposition 3.1.3
arising from Ber(JNdK, m, p) with 1 ≤ m < Nd and unitary matrix

U = N−d/2F W ,

where F and W are the d-dimensional Fourier matrix and discrete Haar wavelet transform,
respectively. Then

µ(C) ≲d
Nd

m
· Γ(p).

Now we state and prove a key lemma needed for image recovery guarantees from Fourier
measurements.

23



Lemma 3.2.4 (RIP for Bernoulli variable subsampled Fourier-Haar matrix). Let δ > 0,
0 < ϵ < 1, d ≥ 1, 2 ≤ s ≤ Nd, 1 ≤ m < Nd, p = (pi)Nd

i=1 and Ω ∼ Ber(JNdK, m, p).
Suppose A = N−d/2PΩDF W where F and W are the d-dimensional Fourier matrix and
discrete Haar wavelet transform, respectively, and D is a diagonal matrix with diagonal
entries (D)ii = 1√

pi
for i = 1, . . . , Nd. If

m ≳d δ−2 · Γ(p) · s ·
(
log(Γ(p)Ns) · log2(s) · log(N) + log(ϵ−1)

)
, (3.2.3)

then with probability at least 1− ϵ, A has the RIP of order s with constant δs ≤ δ.

Proof. Given the jointly isotropic collection C = {Ai}N
d

i=1 from Lemma 3.2.3 and ai ∼ Ai

for each i, the associated measurement matrix

A = 1√
Nd


a∗

1
...

a∗
Nd

 ∈ CNd×Nd

is precisely A = N−d/2PΩDF W , where Ω ∼ Ber(JNdK, m, p) and D is a diagonal matrix
with diagonal entries (D)ii = p

−1/2
i for i = 1, . . . , Nd. Then for 0 < ϵ < 1, 2 ≤ s ≤ Nd, by

Lemma 3.1.6, if

Nd ≳ δ−2 · µ(C) · s ·
(
log(2(µ(C)s + 1)) · log2(s) · log(Nd) + log(ϵ−1)

)
(3.2.4)

then with probability at least 1 − ϵ, A has the RIP of order s with constant δs ≤ δ. Now,
by Lemma 3.2.3 we have

µ(C) ≲d
Nd

m
· Γ(p),

and in combination with Γ(p) > 1 (Remark 3.2.2) and N, s ≥ 2 we have

log(2(µ(C)s + 1)) ≲d log(Γ(p)Ns).

This is shown as follows. Using Lemma 3.2.3, we have

µ(C) ≤ ϕ(d) · Nd

m
· Γ(p)

for some (positive) function ϕ. Also, N, s ≥ 2 and Γ(p) > 1, so log(Γ(p)Ns) ≥ 1. Therefore

log(2(µ(C)s + 1)) ≤ log(2(ϕ(d)Ndm−1Γ(p)s + 1))

≤ log
(
2(ϕ(d) + 1)NdΓ(p)s

)
≤ log(2(ϕ(d) + 1)) + d log(Γ(p)Ns)

≤ (log(2(ϕ(d) + 1)) + d) log(Γ(p)Ns)
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giving log(2(µ(C)+1)) ≲d log(Γ(p)Ns). Manipulating (3.2.4), by using the previous bounds
and factoring out d from log(Nd), yields the condition

Nd ≳d δ−2 · Nd

m
· Γ(p) · s ·

(
log(Γ(p)Ns) · log2(s) · log(N) + log(ϵ−1)

)
.

Multiplying both sides by mN−d gives the condition (3.2.3). This condition implies (3.2.4),
giving the result.

Now we state and prove a crucial result we use to show image recovery, a Poincaré-
like inequality, that arises from a connection between the TV semi-norm and Haar wavelet
coefficients. This connection was first used in [71, 72] to show recovery of gradient-sparse
signals. It has since become a standard tool to show gradient-sparse recovery guarantees,
see e.g. [4, 54,80] and [5, Chap. 17].

Lemma 3.2.5 (Poincaré inequality). Consider the setup of Lemma 3.2.4 with δ = 1/3 and
A = m−1/2PΩF . For d = 1, given the measurement condition

m ≳ Γ(p) · s ·
(
log(Γ(p)Ns) · log2(s) · log(N) + log(2ϵ−1)

)
(3.2.5)

then with probability at least 1− ϵ/2 the following holds

∥x∥ℓ2 ≲
√

Γ(p)∥Ax∥ℓ2 +
√

N∥x∥TV
s

, ∀x ∈ CN .

For d ≥ 2, given the measurement condition

m ≳d Γ(p) · s · log2(N) ·
(
log(Γ(p)N log2(N)s) · log2(s log2(N)) · log(N) + log(2ϵ−1)

)
(3.2.6)

then with probability at least 1− ϵ/2 the following holds

∥x∥ℓ2 ≲d

√
Γ(p)∥Ax∥ℓ2 + ∥x∥TV√

s
, ∀x ∈ CNd

.

Proof. Write B = N−d/2PΩDF . By Lemma 3.2.4 with δ = 1/3 and respective measurement
conditions (3.2.5) and (3.2.6), with probability at least 1− ϵ/2, the matrix BW has either,
for d = 1, the RIP of order s with constant δs ≤ 1/3, or for d ≥ 2, the RIP of order
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s′ = ⌈s log2(N)⌉ with constant δs′ ≤ 1/3. By [4, Lem. 7.4]1, in the case of d = 1 we get

∥x∥ℓ2 ≲ ∥Bx∥ℓ2 +
√

N∥x∥TV
s

∀x ∈ CN ,

and for the case d ≥ 2 we get

∥x∥ℓ2 ≲d ∥Bx∥ℓ2 + ∥x∥TV√
s

, ∀x ∈ CNd
.

It now remains to show that ∥Bx∥ℓ2 ≤
√

Γ(p)∥Ax∥ℓ2 . Observe that we can express

B = N−d/2PΩDF = (mN−d)1/2PΩDP ⊤
Ω A

and we have ∥PΩ∥ℓ2 = 1, so

∥Bx∥ℓ2 ≤
√

m

Nd
∥D∥ℓ2∥Ax∥ℓ2 ≤

√
m

Nd
· 1

minω{
√

pω}
∥Ax∥ℓ2 <

√
Γ(p)∥Ax∥ℓ2 .

The final inequality follows from there being at least one ω for which pω < 1 and√
m

Nd
· 1
√

pω
≤
√

Γ(p) · qω√
Nd
≤
√

Γ(p),

for all ω satisfying pω < 1.

Note that the choice of δ = 1/3 is arbitrary, where any δ <
√

2 − 1 for Lemma 2.1.5 is
sufficient for later developments.

3.2.3 Near-optimal variable sampling strategy

Here we derive a theoretically near-optimal sampling strategy for Bernoulli variable density
sampling. By near-optimal, we mean that it nearly minimizes the parameter Γ(p) arising in
the measurement conditions (3.2.3), (3.2.5) and (3.2.6). In particular, our choice of p will
lead to measurement conditions of the form m ≳d s · polylog(N, s, ϵ−1).

First, we show for an arbitrary Bernoulli vector p that Γ(p) ≳ log(Nm−1/d). Second,
we show there is a specific choice p̂ for which Γ(p̂) ≲d log(N). Note the near-optimality of
p̂, where the upper bound on Γ(p̂) is almost the same order as the global lower bound. This
is inspired from the discussion and results in [4, Sec. 4].

1The referenced lemma assumes BW has the RIP of order 5k with constant δ5k < δ = 1/3. To clarify, the
relevance of δ = 1/3 in the proof is only when they reference [4, Lem. SM1.7], which only requires δ ≤ 1/2.
This is compatible with our use of δ = 1/3. Note that these values of δ are arbitrarily chosen to ensure the
RIP implies the rNSP (e.g. see Lemma 2.1.5).
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Proposition 3.2.6. Let 1 ≤ m < Nd. Given a Bernoulli variable density sampling scheme
Ber(JNdK, m, p), we have Γ(p) ≳ log(Nm−1/d).

Proof. Observe that in general qω ≤ ωπ(1)
d/2. Then we have

Γ(p) ≥
∑

ω:pω<1

Γ(p)pω

m
≥

∑
ω:pω<1

q−2
ω ≥

∑
ω:pω<1

(ωπ(1))−d.

Now we want a lower bound of the right-hand side independent of the sampling strategy. We
do this by only considering frequencies ω outside the box ∥ω∥ℓ∞ ≤ ⌈m1/d/2⌉. The purpose
of this is to ignore at least m of the frequencies ω which maximize q−2

ω , which serves as
a general lower bound regardless of p. For this argument to work, we further assume that
m ≤ (N − 2)d.

The number of frequencies inside the box is (2⌈m1/d/2⌉+1)d > m, so it contains at least
m frequencies. The assumption m ≤ (N − 2)d ensures the set of frequencies outside the box
is nonempty. Now, for k = N/2, N/2 − 1, . . . , ⌈m1/d/2⌉ + 1, there are kd−1 frequencies ω

where ω1 = k and 0 < ωj ≤ k for 2 ≤ j ≤ d. Note again that the assumption m ≤ (N − 2)d

ensures there are a nonzero number of k values. This yields

∑
ω:pω<1

(ωπ(1))−d ≥
N/2∑

k=⌈m1/d/2⌉+1

kd−1k−d =
N/2∑

k=⌈m1/d/2⌉+1

1
k
≳ log

(
N

m1/d

)
,

giving the result. In the other case when (N − 2)d < m < Nd, the result holds from
Remark 3.2.2 and by observing that log(Nm−1/d)↘ 0 when m↗ Nd.

Now we choose a Bernoulli vector p that minimizes Γ(p). To do so, we take inspiration
from the optimal sampling distribution in [4, Lem. 4.1]. The key idea is to ensure the
bound in Proposition 3.2.6 is as tight as possible. Intuitively from the proof, we can achieve
this by sampling frequencies satisfying ∥ω∥ℓ∞ ≲ m1/d with high probability, and sampling
frequencies outside this region with low probability. This can be done more precisely as
follows. We define p̂ by

p̂ω = min
{

mCq−2
ω , 1

}
, ω ∈ {−N/2 + 1, . . . , N/2}d,

where C > 0 is a unique constant determined by the constraint
∑

ω p̂ω = m. To verify the
existence and uniqueness of C, define the function

ϕ(t) =
(∑

ω

min
{

mtq−2
ω , 1

})
−m, t ∈ [0,∞).
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Then
∑

ω p̂ω = m if and only if C is a root of ϕ. Note that ϕ is continuous at every t ∈ [0,∞).
Writing

T := 1
m
·
(
max

ω
qω

)2
= 1

m

(
N

2

)d

,

then by continuity of ϕ, and observing that ϕ(0) = −m < 0 and ϕ(T ) = Nd − m > 0,
the intermediate value theorem gives that there exists C ∈ (0, T ) such that ϕ(C) = 0.
Uniqueness of C follows from the fact that ϕ is strictly increasing on (0, T ). We conclude
that p̂ is well-defined.

Next, note that

Γ(p̂) = max
ω:p̂ω<1

{
mq−2

ω

p̂ω

}
= max

ω:p̂ω<1

{ 1
C

}
= 1

C
.

Now to bound Γ(p̂) above, we have

m =
∑
ω

p̂ω =
∑
ω

min{mCq−2
ω , 1} ≤

∑
ω

mCq−2
ω = mC

∑
ω

q−2
ω ≲d mC log(N),

where we used the inequality
∑

ω q−2
ω ≲d log(N) in the last step (see the proof of Lemma

4.1 in [4, Sec. SM3], noting their definition of qω is the same as ours). Dividing out by m

and C yields

Γ(p̂) = 1
C

≲d log(N),

which is what we wanted to show. This establishes near-optimality of p̂ with

log
(

N

m1/d

)
≲ Γ(p̂) ≲d log(N).

An example of p̂ for d = 2 can be seen in Fig. 3.1 (left) together with a random draw
corresponding to p̂ (right). Note that this resembles the theoretically optimal sampling
mask shown in [4, Sec. 4.1] for d = 2. However, the approach considered therein involves
random sampling with replacement.

Finally, we close this discussion with a couple of comments. First, unlike in [4, Lem. 4.1],
our general bound Γ(p) ≳ log(Nm−1/d) depends on m. This is an artifact of deterministic
samples arising in the Bernoulli model. Second, we emphasize that our sampling strategy
p̂ is near-optimal in a theoretical sense. In practice, recovery performance can be improved
by ad hoc or heuristic approaches (see [5, Chap. 4] for instance).
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Figure 3.1: Near-optimal variable sampling Bernoulli vector (left) and mask (right) for d = 2
with N = 512, 10% sampling rate and centred zero-frequency. For the Bernoulli vector, dark
and light pixels correspond to near zero or near one probability, respectively.

3.2.4 Bounds for expected number of measurements

Recall that we opted to use the Bernoulli model to enforce sampling each frequency at most
once, given a Bernoulli vector of probabilities. This contrasts with other forms of sampling
done in compressed sensing (e.g. each frequency is sampled independently from a density
over the frequencies). The use of the Bernoulli model is necessary for the algorithm we use
to perform image reconstruction, but has the downside that the number of measurements
itself becomes a random variable. Here we show that given a random draw of frequencies
Ω ∼ Ber(JNK, m, p), then |Ω| is near m with high probability. This is straightforward to
show using concentration inequalities (e.g. see [95, Chap. 2]). For example, we can show |Ω|
deviates from m with exponentially decaying probability.

Proposition 3.2.7. If Ω ∼ Ber(JNK, m, p), then P (||Ω| −m| ≥ t) ≤ e−2t2/N .

Proof. For j ∈ JNK, let Xj denote the random variable where Xj = 1 if j ∈ Ω (with
probability pj) and Xj = 0 otherwise. Then {Xi} are all independent and the result follows
from Hoeffding’s inequality [95, Thm. 2.2.6].

Note one can achieve tighter bounds by using other concentration inequalities (e.g.
Chernoff bounds), but sacrifice being practical to work with and interpret. The use of
Hoeffding’s inequality is both simple and sufficient for what we claimed.

3.3 Stacking scheme with NESTA

Recall that NESTA is the ℓ1-minimization algorithm we use for image reconstruction via
TV minimization (2.3.2). Here we present the notion of a stacking scheme with Bernoulli
sampling. The stacking scheme is primarily inspired to derive a practical implementation
of NESTANets, i.e. unrolling of NESTA, and the theoretical requirements for recovery in
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Fourier imaging. For the former reason, this goes hand-in-hand with using the Bernoulli
model. Regarding the latter, to carry out the recovery analysis in Section 4.2, both uniform
and variable subsampled measurements are used. They are generated independently, and
then “stacked” together, possibly duplicating existing measurements to form a sampling
mask compatible with NESTA.

The stacking scheme is constructed as follows. We are given two sampling masks, uniform
and variable, that is Ω1 ∼ Ber(JNdK, m/2) and Ω2 ∼ Ber(JNdK, m/2, p) for some Bernoulli
vector p. This defines two sets of measurements

ỹi = Bix + ei ∈ C|Ωi|, Bi = 1√
m

PΩiF ∈ C|Ωi|×Nd
, i = 1, 2,

where x ∈ CNd is the image to recover. By virtue of the Bernoulli model, each frequency is
sampled at most twice.

Now the goal is to extend Ω1 and Ω2 to a common superset Ω so that the measurement
matrix B = m−1/2PΩF ∈ C|Ω|×Nd is the same for both sets of measurements. A suitable
choice would be Ω = Ω1 ∪ Ω2. Consequently, we must also insert additional entries to ỹ1

and ỹ2 to be compatible with B in both size and correspondence of entries with sampled
frequencies.

To do this precisely with Ω = Ω1∪Ω2, extend ỹ1 by taking the measurements indexed by
Ω2\Ω1 in ỹ2 and canonically insert them into ỹ1. This defines the extended measurements
y1. Symmetrically, extend ỹ2 by taking measurements indexed by Ω1\Ω2 in ỹ1 and insert
them into ỹ2. This yields the extended measurements y2. Therefore, we can express the
extended measurements and measurement matrix using the stacked form

y = Ax + e, A =
[
B

B

]
∈ C2|Ω|×Nd

, y =
[
y1

y2

]
∈ C2|Ω|.

The vector y is referred to as the stacked measurements. Note that we do not have AA∗ = cI

for some constant c > 0, as required for NESTA. Instead we have

AA∗ = Nd

m

[
I I

I I

]
,

which motivates deriving a modified version of NESTA in Chapter 4 that uses stacked
measurements. Moreover, up to a row permutation, the stacked matrix A can be expressed
as

A = 1√
m


PΩ1

PΩ2

PΩ3

F ,
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where Ω1, Ω2 are as before and Ω3 = Ω1△Ω2 is the symmetric difference of Ω1 and Ω2.
Specifically, we have Ω1△Ω2 := (Ω1 ∪ Ω2)\(Ω1 ∩ Ω2). This serves to separate the uniform
and variable density measurements to prove gradient and image recovery in Section 4.2.

Finally, we quickly comment on the size of Ω in expectation. Since the samples are
independent, we have

E(|Ω1 ∩ Ω2|) =
Nd∑
i=1

P(i ∈ Ω1) · P(i ∈ Ω2) =
Nd∑
i=1

m

2Nd
· pi = m2

4Nd
.

Thus E(|Ω|) = m− m2

4Nd by the inclusion-exclusion principle. In particular, the expectation
grows linearly in m, i.e. 3

4m ≤ E(|Ω|) ≤ m. Succinctly, we express this as E(|Ω|) ≍ m.
Lastly, the same arguments from Proposition 3.2.7 can be applied to show |Ω| deviates from
its expected value with exponentially decaying probability.
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Chapter 4

Solving Fourier imaging problems
with TV minimization

Here we present the technical details of the algorithm we use to solve Fourier imaging
problems via TV minimization. First, we introduce and derive stacked NESTA, a first-
order optimization algorithm based on NESTA [13]. In particular, stacked NESTA involves
computing orthogonal projections onto the QCBP constraint set, which is computationally
exact and efficient for stacked matrices introduced in Section 3.3. Second, we combine
NESTA error bounds and the results in Chapter 3 to prove accurate and stable recovery
via stacked NESTA for Fourier imaging. This is based on the proof techniques found in [5,
Chap. 8]. Furthermore, we describe a restart procedure that theoretically guarantees an
exponential decay in reconstruction error, thus accelerating recovery.

4.1 Solutions by gradient-based optimization via smoothing

4.1.1 The NESTA algorithm and error bound

NESTA [13,14] is an algorithm for ℓ1-minimization, which is derived from Nesterov’s method
with smoothing [73]. Nesterov’s method is a general accelerated projected gradient-descent
algorithm, with update steps expressed as constrained optimization problems. The steps
have closed-form expressions if exact formulas are known for the orthogonal projection onto
the constraint set. NESTA is obtained by applying Nesterov’s method with smoothing to
QCBP (2.2.1), which assumes that AA∗ = cI for some c > 0 [13] to efficiently and exactly
compute projections. The resulting algorithm is given in Algorithm 1.

A discussion of computing orthogonal projections with general A for QCBP is found
in [14, Sec. 3.7], which provides a procedure when the singular value decomposition (SVD)
of A is known. We avoid this approach since, first, computing the SVD of A for imaging
is often intractable, and second, one has to solve a nonlinear equation in each update step,
making unrolling an impractical endeavour. This motivates modifying NESTA to compute
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Algorithm 1: NESTA for QCBP.
Input : Vectors y ∈ Cm, matrix A ∈ Cm×N satisfying AA∗ = cI for c > 0,

parameters η > 0, µ > 0, real sequences {αn}∞j=0, {τn}∞n=0, number of
iterations t > 0, and z0 ∈ CN .

Output: The vector xt−1, which estimates a minimizer of (2.2.1) with A and y
satisfying (4.1.5).

1 for n = 0, 1, . . . , t− 1 do
2 Compute xn:
3 q ← zn − (∥W ∥2ℓ2/µ)−1W (Tµ(W ∗zn))
4 λ← max

{
0, η−1∥y −Aq∥ℓ2 − 1

}
5 xn ← λ

c B∗(y1 + y2 − 2Bq) + q.
6 Compute vn:
7 q ← z0 − (∥W ∥2ℓ2/µ)−1∑n

i=0 αiW (Tµ(W ∗zi))
8 λ← max

{
0, η−1∥y −Aq∥ℓ2 − 1

}
9 vn ← λ

c B∗(y1 + y2 − 2Bq) + q.
10 Compute zn+1 ← τnvn + (1− τn)xn.
11 end

exact projections with stacked measurement matrices from Section 3.3, enabling a practical
unrolling of stacked NESTA.

Since Nesterov’s method [73] requires computing derivatives of the objective function,
we cannot directly apply it to QCBP as the ℓ1-norm is not differentiable everywhere. To
circumvent this, we apply smoothing [12,73] (see [11, Sec. 10.8] for recent discussion), which
defines a new optimization problem amenable to Nesterov’s method. This is done by using a
smooth approximation of the nonsmooth objective function. The solution of the smoothed
problem will approximate a solution to QCBP, with a small tradeoff in requiring more
iterations to compute a solution when using a better smooth approximation. Given µ > 0,
we consider the smoothed QCBP problem

min
z∈CN

∥W ∗z∥ℓ1,µ subject to ∥Az − y∥ℓ2 ≤ η, (4.1.1)

where

∥z∥ℓ1,µ =
M∑

i=1
Hµ(zi), z ∈ (zi)M

i=1 ∈ CM , (4.1.2)

is the smoothed ℓ1-norm. The function Hµ : C→ R+ is the Huber function, defined by

Hµ(z) =


1

2µ |z|
2 |z| ≤ µ

|z| − µ
2 |z| > µ

, z ∈ C. (4.1.3)
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Algorithm 2: Stacked NESTA for QCBP.
Input : Vectors y1, y2 ∈ C

m
2 , matrix B ∈ C

m
2 ×N satisfying BB∗ = cI for c > 0,

parameters η > 0, µ > 0, real sequences {αn}∞j=0, {τn}∞n=0, number of
iterations t > 0, and z0 ∈ CN .

Output: The vector xt−1, which estimates a minimizer of (2.2.1) with A and y
satisfying (4.1.5).

1 for n = 0, 1, . . . , t− 1 do
2 Compute xn:
3 q ← zn − (∥W ∥2ℓ2/µ)−1W (Tµ(W ∗zn))

4 λ← max
{

0, 1
2

(
1−

√
2η2−∥y1−y2∥2

ℓ2
∥y1+y2−2Bq∥ℓ2

)}
5 xn ← λ

c B∗(y1 + y2 − 2Bq) + q.
6 Compute vn:
7 q ← z0 − (∥W ∥2ℓ2/µ)−1∑n

i=0 αiW (Tµ(W ∗zi))

8 λ← max
{

0, 1
2

(
1−

√
2η2−∥y1−y2∥2

ℓ2
∥y1+y2−2Bq∥ℓ2

)}
9 vn ← λ

c B∗(y1 + y2 − 2Bq) + q.
10 Compute zn+1 ← τnvn + (1− τn)xn.
11 end

Here the parameter µ is known as the smoothing parameter, and controls the approximation
of the ℓ1-norm in the sense that if µ ↘ 0, then ∥·∥ℓ1,µ → ∥·∥ℓ1 uniformly. We refer to
the vector function Tµ : CM → CM formally as the gradient of ∥·∥ℓ1,µ, which is defined
elementwise by

(Tµ(z))i =


zi
µ , |zi| ≤ µ

zi
|zi| , |zi| > µ

, i = 1, . . . , M. (4.1.4)

One may verify that Tµ is indeed the gradient of the smoothed ℓ1-norm when restricting
ourselves to RM . We motivate the choice of formulas for ∥·∥ℓ1,µ and Tµ in Section 4.1.4.
Recall that the stacking scheme from Section 3.3 involves a matrix A ∈ Cm×N and column
vector y ∈ Cm with even m, satisfying the stacking form

A =
[
B

B

]
, y =

[
y1

y2

]
, BB∗ = cI, B ∈ C

m
2 ×N , y1, y2 ∈ C

m
2 , c > 0. (4.1.5)

With this, Nesterov’s method for (4.1.1), assuming A and y are expressed in stacking form,
is given by Algorithm 2. We dub this algorithm as stacked NESTA.

We now state an objective error bound for the stacked NESTA iterates. This makes pre-
cise how solving the smoothed problem approximates a solution to the nonsmooth problem,
at least in terms of the objective error.
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Algorithm 3: Nesterov’s method
Input : A K-smooth function f and set Q ⊆ RN as in (4.1.6), prox-function pp

with strong convexity constant σp and unique minimizer z0 ∈ Q,
sequences {αn}∞n=0, {τn}∞n=0, and number of iterations t > 0.

Output: The vector xt−1, which estimates a minimizer of (4.1.6).
1 for n = 0, 1, . . . , t− 1 do
2 xn ← argmin

x∈Q

K
2 ∥x− zn∥2ℓ2 + ⟨∇f(zn), x− zn⟩

3 vn ← argmin
x∈Q

K
σp

pp(x) +
∑n

i=0 αi⟨∇f(zi), x− zi⟩

4 zn+1 ← τnvn + (1− τn)xn

5 end

Lemma 4.1.1. Suppose A and y satisfies (4.1.5). Let xn be the result of the nth iteration
of Algorithm 2 with initial vector z0 ∈ CN satisfying ∥y −Az0∥ℓ2 ≤ η, and parameters
αi = i+1

2 and τi = 2
i+3 . Then

∥W ∗xn∥ℓ1 − ∥W ∗x∥ℓ1 ≤
2∥W ∥2ℓ2

µ(n + 1)2 ∥x− z0∥2ℓ2 + Mµ

2 , ∀x : ∥y −Ax∥ℓ2 ≤ η.

For the proof, see Section 4.1.5. Observe that the second term Mµ
2 of the error bound

is the error from approximation by smoothing. This term can be shrunk by taking µ to
be small, but as a tradeoff, one needs to run more iterations to sufficiently reduce the first
term in the error bound.

The remainder of this section is dedicated to deriving smoothed QCBP, Algorithm 2,
and proving Lemma 4.1.1.

4.1.2 A primer on Nesterov’s method

Before proceeding with deriving stacked NESTA, we quickly introduce Nesterov’s method.
To do this, we need a definition used commonly when discussing gradient-based optimization
algorithms.

Definition 4.1.2 (K-smoothness [11, Defn. 5.1]). A function f : D → R with effective
domain D ⊆ RN is said to be K-smooth over a set Q ⊆ D if it is differentiable over Q and
satisfies

∥∇f(x)−∇f(y)∥ℓ2 ≤ K∥x− y∥ℓ2 for all x, y ∈ Q.

♢

NESTA is a specific implementation of Nesterov’s method, an accelerated projected
gradient-based optimization algorithm. In particular, it tackles general constrained convex
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optimization problems of the form

min
x∈Q

f(x), (4.1.6)

where Q ⊆ RN is closed and convex, and f : D → R is a closed, convex and K-smooth
function with effective domain D ⊆ RN containing Q. Nesterov’s method is presented in
Algorithm 3. The algorithm makes use of a prox-function pp : D → R, a strongly convex
function which specifies an initial point with its unique minimizer. A standard choice that
we use is pp(x) = 1

2∥x− z0∥ℓ2 for given z0 ∈ Q, where σp = 1 here.
Nesterov’s method is an “accelerated” algorithm in the sense that, specific choices of

sequences {αn} and {τn} lead to the objective error f(xn) − f̂ = O(n−2). This improves
upon the typical sublinear convergence rates of many first-order methods [19, 74], which
guarantee an objective error of order O(n−1) or O(n−1/2) in the nth iterate.

4.1.3 NESTA derivation: real-valued data

In this section, the data considered only involve real numbers. Let us consider the problem

min
z∈RN

ϕ(z) subject to ∥y −Az∥ℓ2 ≤ η, (4.1.7)

where ϕ : RN → R is a K-smooth convex function, A ∈ Rm×N , y ∈ Rm, and η > 0. This is
an extension of QCBP where the objective has been replaced with a general differentiable
convex function ϕ. The purpose of considering (4.1.7) is to show we can obtain closed-form
projections onto the constraint set when the matrix A adheres to the stacking scheme. This
is necessary to compute the update steps of Nesterov’s method exactly. Later in this section
we address when ϕ is nonsmooth, which is relevant to when we consider applying Nesterov’s
method to solve QCBP.

Using Algorithm 3, the objective function f = ϕ is being minimized over the set Q =
{z : ∥y −Az∥ℓ2 ≤ η} ⊆ RN . To derive explicit formulas for xn and vn (lines 2 and 3
of Algorithm 3, respectively), we require some additional assumptions. First, we choose
the (primal) prox-function pp(x) = 1

2∥x− z0∥2ℓ2 for fixed z0 ∈ Q, noting that the strong
convexity constant of pp is σp = 1. Second, taking m to be even, we assume A and y take
on the stacked form

A =
[
B

B

]
, y =

[
y1

y2

]
, y1, y2 ∈ R

m
2 , B ∈ R

m
2 ×N , BB⊤ = cI with c > 0, (4.1.8)
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which is (4.1.5) restricted to real numbers. For the prescribed prox-function, the update
rules for xn and vn become

xn = argmin
z:∥Az−y∥ℓ2 ≤η

K

2 ∥z − zn∥2ℓ2 + ⟨∇ϕ(zn), z − zn⟩,

vn = argmin
z:∥Az−y∥ℓ2 ≤η

K

2 ∥z − z0∥2ℓ2 +
n∑

j=0
αj⟨∇ϕ(zj), z − zj⟩.

Both update steps involve finding a minimizer to a quadratic function subject to a quadratic
constraint. As is done in [5, Section 7.6.3], we can equivalently express the vn update as

vn = argmin
z:∥Az−y∥ℓ2 ≤η

K

2 ∥z − z0∥2ℓ2 +
〈

n∑
j=0

αj∇ϕ(zj), z − z0

〉
, (4.1.9)

so both the xn and vn update steps can be expressed as

argmin
z:∥Az−y∥ℓ2 ≤η

K

2 ∥z − v∥2ℓ2 + ⟨u, z − v⟩ = argmin
z:∥Az−y∥ℓ2 ≤η

∥∥∥∥∥∥
√

K

2 (z − v) + u√
2K

∥∥∥∥∥∥
2

ℓ2

= argmin
z:∥Az−y∥ℓ2 ≤η

∥∥∥∥z − (v − u

K

)∥∥∥∥2

ℓ2
, (4.1.10)

for some fixed u, v ∈ RN . Specifically, (4.1.10) is the orthogonal projection of v − u/K

onto the constraint set. We consider a convenient reformulation of (4.1.10), where we aim
to compute a closed form expression for

argmin
ξ:∥Aξ−b∥ℓ2 ≤η

1
2∥ξ∥

2
ℓ2 . (4.1.11)

This equation is obtained from (4.1.10) using the change of variables ξ = z −w and b =
y −Aw, where w = v − u/K. Under special circumstances, we can explicitly find (4.1.11)
by algebraically solving equations defined by the Karush-Kuhn-Tucker (KKT) conditions.
To do this, one usually imposes A to have certain structure, such as the orthonormal row
condition AA⊤ = cI for c > 0. As we will see, (4.1.11) can be computed explicitly with the
stacking assumption (4.1.8).

Let us proceed to find (4.1.11) with A satisfying (4.1.8). For additional notation, we
express the vector b ∈ Rm as a stacked vector by

b =
[
b1

b2

]
, b1, b2 ∈ R

m
2 .
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First we have

A⊤A = 2B⊤B ∈ RN×N , AA⊤ = c

[
I I

I I

]
∈ Rm×m, (4.1.12)

where I here is the m
2 ×

m
2 identity matrix. Next, observe that (4.1.11) defines a convex

optimization problem. Writing F (ξ) = 1
2∥ξ∥

2
ℓ2 and G(ξ) = 1

2

(
∥Aξ − b∥2ℓ2 − η2

)
, then the

KKT conditions say for some λ ∈ R and ξ ∈ RN ,

∇F (ξ) + λ∇G(ξ) = 0, (4.1.13)

G(ξ) ≤ 0, (4.1.14)

λG(ξ) = 0, (4.1.15)

λ ≥ 0, (4.1.16)

if and only if ξ solves (4.1.11) and λ solves the respective dual problem. The point ξ from a
pair (ξ, λ) solving the KKT system will be unique, since the objective in (4.1.11) is strongly
convex. Using ∇F (ξ) = ξ and ∇G(ξ) = A⊤(Aξ − b), the first-order condition (4.1.13) is

∇F (ξ) + λG(ξ) = ξ + λA⊤Aξ − λA⊤b =
(
I + λA⊤A

)
ξ − λA⊤b = 0.

Multiplying the above by

(
I + λA⊤A

)−1
=
(

I − λ

1 + 2cλ
A⊤A

)
and rearranging gives

ξ =
(

I − λ

1 + 2cλ
A⊤A

)
(λA⊤b)

= λA⊤b− λ2

1 + 2cλ
A⊤AA⊤b

= λA⊤b− cλ2

1 + 2cλ
A⊤

[
I I

I I

]
b

= λ
[
B⊤ B⊤

] [b1

b2

]
− cλ2

1 + 2cλ

[
B⊤ B⊤

] [b1 + b2

b1 + b2

]

=
(

λ− 2cλ2

1 + 2cλ

)
B⊤(b1 + b2)

= λ

1 + 2cλ
B⊤(b1 + b2),
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where we used (4.1.12) to simplify. Thus

ξ = λ

1 + 2cλ
B⊤(b1 + b2) (4.1.17)

is the unique vector equal to (4.1.11), expressed in terms of the KKT multiplier λ. To find
a closed form expression for λ, first note that if λ = 0, then ξ = 0. Otherwise if λ > 0, then
from the slackness condition (4.1.15) we have ∥Aξ − b∥ℓ2 = η. Multiplying (4.1.17) by A

and subtracting by b yields

Aξ − b = λ

1 + 2cλ
AB⊤(b1 + b2)− b = cλ

1 + 2cλ

[
b1 + b2

b1 + b2

]
− b

For brevity, we write

b̃ =
[
b1 + b2

b1 + b2

]
.

Making another change of variables, we denote ρ = cλ
1+2cλ . Taking the ℓ2-norm and squaring

the previous calculation

η2 = ∥Aξ − b∥2ℓ2 = ∥ρb̃− b∥2ℓ2 = ρ2∥b̃∥2ℓ2 − 2ρ⟨b̃, b⟩+ ∥b∥2ℓ2 ,

gives a quadratic equation in ρ. Assuming b̃ ̸= 0, we obtain the roots

ρ =
⟨b̃, b⟩ ±

√
⟨b̃, b⟩2 − ∥b̃∥2ℓ2

(
∥b∥2ℓ2 − η2

)
∥b̃∥2ℓ2

.

Further simplifying the formula for ρ by using ∥b̃∥2ℓ2 = 2⟨b̃, b⟩ gives

ρ = 1
2

1±

√√√√1− 4 · ∥b∥
2
ℓ2 − η2

∥b̃∥2ℓ2

 .

To identify which root to assign to ρ, since λ ≥ 0 from (4.1.16) and

ρ = cλ

1 + 2cλ
⇐⇒ λ = ρ

c(1− 2ρ) ,

it is necessary that 0 ≤ ρ < 1
2 . Thus, we take the negative-signed root. Therefore, provided

b̃ ̸= 0,

λ = ρ

c(1− 2ρ) , ρ = max

0,
1
2

1−

√√√√1− 4 · ∥b∥
2
ℓ2 − η2

∥b̃∥2ℓ2

 (4.1.18)
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and thus we obtained a closed form expression for λ. This gives us the desired ξ for (4.1.11).
We now put everything together to obtain a closed form expression for (4.1.10). This

will give us the exact formulas for xn and vn in Algorithm 3. Write y as the stacked vector

y =
[
y1

y2

]
, y1, y2 ∈ R

m
2 ,

and recall A in its stacked form (4.1.8) in terms of B. For simplicity, we omit mention of
the measurement matrix A and vector y when defining NESTA for the stacking scheme,
instead referring to their block components B and y1, y2, respectively.

Using b = y −Aw and (4.1.12), one can show the identities

∥b̃∥2ℓ2 = 2∥y1 + y2 − 2Bw∥2ℓ2 ,
1
2∥b̃∥

2
ℓ2 − 2∥b∥2ℓ2 = −∥y1 − y2∥2ℓ2 ,

giving

1− 4 · ∥b∥
2
ℓ2 − η2

∥b̃∥2ℓ2

= 2η2 − ∥y1 − y2∥2ℓ2

∥y1 + y2 − 2Bw∥2ℓ2
,

hence (4.1.18) can be written as

λ = ρ

c(1− 2ρ) , ρ = max

0,
1
2

1−

√
2η2 − ∥y1 − y2∥2ℓ2

∥y1 + y2 − 2Bw∥ℓ2

 .

Remark 4.1.3. There are two points of interest pertaining to this form of ρ. First, observe
that because ρ is real-valued, the inequality ∥y1 − y2∥ℓ2 ≤

√
2η must hold. This gives a

necessary condition for (4.1.10) to have a solution, and is otherwise infeasible. Therefore η

must be correctly specified when given y1 and y2 a priori. The same inequality can be used
as a lower bound for η to ensure feasibility.

Second, if the denominator ∥y1 + y2 − 2Bw∥ℓ2 = 0, we assign ρ = 0. To see why this is
reasonable, observe that if ∥y1 + y2 − 2Bw∥ℓ2 = 0, then we have Bw = 1

2(y1 + y2). Thus
for any feasible point x one has

∥Aw − y∥ℓ2 =
√
∥Bw − y1∥2ℓ2 + ∥Bw − y2∥2ℓ2 =

√
2

2 ∥y1 − y2∥ℓ2

= 1
2

∥∥∥∥∥
[
y1

y2

]
−
[
y2

y1

]∥∥∥∥∥
ℓ2

≤ ∥y −Ax∥ℓ2 ≤ η,

where we used the triangle inequality in the second-last step. This shows w is a feasible
point of (4.1.7). Therefore, in view of the update step general form (4.1.10), we must have
z = w = v − u/K. To be consistent with the KKT conditions (4.1.13) to (4.1.16) for
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Algorithm 4: Nesterov’s method for (4.1.19).
Input : Vectors y1, y2 ∈ Rm, matrix B ∈ Rm×N satisfying BB⊤ = cI for c > 0,

parameter η > 0, K-smooth function ϕ, real sequences {αn}∞j=0, {τn}∞n=0,
number of iterations t > 0, and z0 ∈ RN .

Output: The vector xt−1, which estimates a minimizer of (4.1.19), or equivalently
(4.1.7) if A and y satisfy (4.1.8).

1 for n = 0, 1, . . . , t− 1 do
2 Compute xn:
3 q ← zn −K−1∇ϕ(zn)

4 λ← max
{

0, 1
2

(
1−

√
2η2−∥y1−y2∥2

ℓ2
∥y1+y2−2Bq∥ℓ2

)}
5 xn ← λ

c B⊤(y1 + y2 − 2Bq) + q.
6 Compute vn:
7 q ← z0 −K−1∑n

i=0 αi∇ϕ(zi)

8 λ← max
{

0, 1
2

(
1−

√
2η2−∥y1−y2∥2

ℓ2
∥y1+y2−2Bq∥ℓ2

)}
9 vn ← λ

c B⊤(y1 + y2 − 2Bq) + q.
10 Compute zn+1 ← τnvn + (1− τn)xn.
11 end

(4.1.11), this means that the dual feasibility constraint is active, i.e. λ = 0, and in turn,
ρ = 0. ♢

Finally, using ξ = z − w, b = y −Aw, and λ = ρ
c(1−2ρ) one obtains the vector z for

(4.1.10), given by
z = ρ

c
B⊤(y1 + y2 − 2Bw) + w.

Therefore we have an exact formula for xn if we set w = zn −K−1∇ϕ(zn), and otherwise
for vn if we set w = z0 − K−1∑n

j=0 αj∇ϕ(zj). This gives us Algorithm 4 to solve the
optimization problem

min
x∈RN

ϕ(x) subject to
√
∥y1 −Bx∥2ℓ2 + ∥y2 −Bx∥2ℓ2 ≤ η, (4.1.19)

which is equivalent to (4.1.7) provided A satisfies the stacked form (4.1.8). Note that to
maintain consistent notation with Algorithm 2 we replace w and ρ from our derivation with
q and λ, respectively, when defining Algorithm 4.

The objective error bound for the iterates in Algorithm 4 can be obtained from [73,
Thm. 2]. We state a modified version of this theorem as a proposition, which will be used
to prove Lemma 4.1.1.

Proposition 4.1.4. Let xn be the result of the nth iteration of Algorithm 4 with initial
vector z0 a feasible point of (4.1.19), ϕ also convex, and parameters αi = i+1

2 and τi = 2
i+3 .
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Then

ϕ(xn)− ϕ(x) ≤ 2K

(n + 1)2 ∥x− z0∥2ℓ2 , ∀x :
√
∥y1 −Bx∥2ℓ2 + ∥y2 −Bx∥2ℓ2 ≤ η.

Proof. Observe that Algorithm 4 is an instance of Nesterov’s method (Algorithm 3) with,
besides the already mentioned assumptions, prox-function pp(x) = 1

2∥x− z0∥2ℓ2 with strong
convexity constant σp = 1. After slightly modifying the proof of [73, Thm. 2] (see the
footnote in [75, Pg. 10]), we get the result.

4.1.4 NESTA derivation: complex-valued data

Algorithm 2 presented in Section 4.1.1 is, in essence, an extension of Algorithm 4 to complex-
valued data and with a specific choice of objective function. In this section we verify that
this extension is the right one, by deriving Algorithm 2 and the smoothed QCBP problem
(4.1.1). Recall the goal is to approximate a solution of the QCBP problem

min
z∈CN

∥W ∗z∥ℓ1 subject to ∥y −Az∥ℓ2 ≤ η, (4.1.20)

with y ∈ Cm, A ∈ Cm×N , W ∈ CN×M and η > 0. We also assume m is even and that A

takes on the stacking form specified in (4.1.5). To derive Algorithm 2, the key idea is to
carefully represent (4.1.20) as a problem over real numbers for which we can apply Algorithm
4, i.e. Nesterov’s method. This is done by using the canonical isomorphism between Cn and
R2n. Proceeding, for w = (wi)2M

i=1 ∈ R2M , we write

∥w∥ℓ1,R2 :=
M∑

i=1

√
w2

i + w2
M+i,

which defines a norm on R2M . This follows from observing that ∥·∥ℓ1,R2 is equivalent to the
ℓ1-norm for CM , in the sense that if w = (a, b) where a, b ∈ RM , then ∥w∥ℓ1,R2 = ∥a + ib∥ℓ1 .
Then (4.1.20) is equivalent to the real problem

min
u,v∈RN

∥∥∥∥∥
[

Re (W )⊤ Im (W )⊤

−Im (W )⊤ Re (W )⊤

] [
u

v

]∥∥∥∥∥
ℓ1,R2

subject to
∥∥∥∥∥
[
Re (A) −Im (A)
Im (A) Re (A)

] [
u

v

]
−
[
Re (y)
Im (y)

]∥∥∥∥∥
ℓ2

≤ η. (4.1.21)

Equivalence here is in the sense that û, v̂ ∈ RN solve the real problem (4.1.21) if and only
if ẑ = û + iv̂ solves (4.1.20).
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To simplify notation, for all n1, n2 ∈ N we denote the real equivalent of complex vectors
z ∈ Cn1 and matrices Z ∈ Cn1×n2 by

z′ =
[
Re (z)
Im (z)

]
∈ R2n1 , Z ′ =

[
Re (Z) −Im (Z)
Im (Z) Re (Z)

]
∈ R2n1×2n2 .

In this way, operations like matrix-vector or matrix-matrix multiplication, adjoint, and ℓ2-
norm over complex numbers, have analogous operations over real numbers. These are stated
in the following proposition with proof omitted.

Proposition 4.1.5. Let n1, n2, n3 ∈ N. Then for all P ∈ Cn1×n2, Q, R ∈ Cn2×n3, x, y ∈
Cn2, the following properties hold

1. (Multiplication) (P x)′ = P ′x′ and (P Q)′ = P ′Q′

2. (Matrix adjoint) (P ∗)′ = (P ′)⊤

3. (ℓ2-norm) ∥x∥ℓ2 = ∥x′∥ℓ2 and ∥P ∥ℓ2 = ∥P ′∥ℓ2

4. (Addition) (x + y)′ = x′ + y′ and (Q + R)′ = Q′ + R′

Now the real problem (4.1.21) can be written compactly with the new notation as

min
z∈R2N

∥(W ′)⊤z∥ℓ1,R2 subject to ∥A′z − y′∥ℓ2 ≤ η. (4.1.22)

Before we can apply Algorithm 4 to the problem above, we need to address two things. First
is to show that we can modify A′ and y′ to satisfy the stacked form (4.1.8) while preserving
the constraint set. Second, since ∥·∥ℓ1,R2 is not differentiable in all of R2M , we use a suitable
smooth approximation instead.

For the first part, note that if A ∈ Cm×N satisfies (4.1.5), then A′ ∈ R2m×2N generally
does not satisfy (4.1.8). This can be corrected by using the permutation matrix

P =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 ∈ R2m×2m,

where 0 and I here are the m
2 ×

m
2 zero and identity matrix, respectively, so that

P A′ =
[
B′

B′

]
∈ R2m×N , P y′ =

[
y′

1
y′

2

]
∈ R2m.

Since the ℓ2-norm is invariant under unitary transformations, the constraint in (4.1.22) is
equivalent to ∥P A′z − P y′∥ℓ2 ≤ η. To address the second part, we use the Moreau envelope
(also known as Moreau-Yosida regularization) to obtain a smooth approximation of ∥·∥ℓ1,R2 .
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Definition 4.1.6 (Moreau envelope [11, Defn. 6.52]). Let n ∈ N. Given a proper closed
convex function f : Rn → R and µ > 0, the Moreau envelope of f is the function Mµ

f :
Rn → R defined by

Mµ
f (w) = min

v∈Rn

{
f(v) + 1

2µ
∥w − v∥2ℓ2

}
, w ∈ Rn.

♢

The parameter µ here is, as before, called the smoothing parameter. The Moreau envelope
is well-defined since the corresponding minimization problem always has a unique solution.
In addition, if f is proper and convex, then Mµ

f is real-valued and convex [11, Thm. 6.55].
From the perspective of optimization theory, an extensive view of the Moreau envelope and
its properties are found in [11, Sec. 6.7]. From there we use a handful of results relevant to our
setup. Combining [11, Ex. 6.54] and [11, Thm. 6.58], the Moreau envelope of f1 = ∥·∥ℓ1,R2

is precisely

Mµ
f1

(w) =
M∑

i=1
Mµ

∥·∥ℓ2
(wi, wM+i), w = (wi)2M

i=1 ∈ R2M ,

where for any fixed k ∈ N,

Mµ
∥·∥ℓ2

(ξ) =


1

2µ∥ξ∥
2
ℓ2 , ∥ξ∥ℓ2 ≤ µ

∥ξ∥ℓ2 − µ
2 , ∥ξ∥ℓ2 > µ

, ξ ∈ Rk,

is known as the Huber function. Its gradient is

∇Mµ
∥·∥ℓ2

(ξ) =


ξ
µ , ∥ξ∥ℓ2 ≤ µ

ξ
∥ξ∥ℓ2

, ∥ξ∥ℓ2 > µ
, ξ ∈ Rk,

and therefore the gradient of Mµ
f1

is given elementwise by

(
∇Mµ

f1
(w)

)
i

=


wj

µ , j = i or M + i,
√

w2
i + w2

M+i ≤ µ

wj√
w2

i +w2
M+i

, j = i or M + i,
√

w2
i + w2

M+i > µ

for i = 1, . . . , 2M . We can express Mµ
f1

as a function over CM by writing

∥z∥ℓ1,µ =
M∑

i=1
Hµ(zi), z ∈ (zi)M

i=1 ∈ CM ,

where

Hµ(z) =


1

2µ |z|
2 |z| ≤ µ

|z| − µ
2 |z| > µ

, z ∈ C.

44



This is precisely what we wrote in (4.1.2) and (4.1.3). In turn, representing ∇Mµ
f1

as a
function over CM , which we denote by Tµ, gives

(Tµ(z))i =


zi
µ , |zi| ≤ µ

zi
|zi| , |zi| > µ

, i = 1, . . . , M,

which is exactly (4.1.4). Therefore, the smoothed version of (4.1.22) is precisely

min
z∈R2N

Mµ
f1

((W ′)⊤z) subject to
∥∥A′z − y′∥∥

ℓ2 ≤ η, (4.1.23)

Now, since the Moreau envelope is 1
µ -smooth [11, Thm. 6.60], the objective function of

(4.1.23) is ∥W ′∥2ℓ2/µ-smooth. Moreover, f1 is convex and defined everywhere, thus Mµ
f1

is
real-valued and convex [11, Thm. 6.55]. Now we can apply Algorithm 4 to (4.1.23) with
data B := B′, y1 := y′

1, y2 := y′
2, and ϕ :=Mµ

f1
((W ′)⊤·). Using Proposition 4.1.5, we can

express (4.1.23) and the update steps in Algorithm 4 with their complex equivalents. This
yields (4.1.1) and Algorithm 2, respectively, which is what we wanted to show.

Remark 4.1.7 (Nesterov smoothing and the Moreau envelope). Moreau-Yosida regular-
ization is a standard technique for smoothing in optimization, with the Moreau envelope
directly related to proximal maps. A smoothed function obtained by Nesterov smooth-
ing [73], under some additional assumptions, can be viewed as the Fenchel dual of the
Moreau envelope [12, Sec. 4.3]. We briefly show that for QCBP and right choice of dual
prox-function, the Moreau envelope and Nesterov smoothing coincide.

Simplifying some of the assumptions in Nesterov’s paper [73], suppose W ∈ RN×M and
Qp ⊆ RN , Qd ⊆ RM are closed, convex and bounded sets. It is assumed that the objective
function f , possibly nonsmooth, can be expressed as

f(x) = max
u∈Qd

{
⟨W ⊤x, u⟩

}
, ∀x ∈ Qp. (4.1.24)

The idea now is to select a dual prox-function pd : Qd → R, assumed to be strongly convex on
Qd with some strong convexity constant σd > 0. Then for µ > 0, the smooth approximation
of f is defined as

fµ(x) = max
u∈Qd

{
⟨W ⊤x, u⟩ − µpd(u)

}
, x ∈ Qp.

In the case of the QCBP objective, it is a standard result that the ℓ1-norm is the dual norm
of the ℓ∞-norm, hence

f(x) = ∥W ⊤x∥ℓ1 = max
u∈Qd

{
⟨W ⊤x, u⟩

}
, Qd = {u ∈ RM : ∥u∥ℓ∞ ≤ 1},
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and so f has the desired representation (4.1.24). Using tools from convex optimization,
observe that f is equal to the support function on Qd [11, Sec. 2.4]. Thus the convex
conjugate of f is given by f∗ = δQd

[11, Ex. 4.9], the indicator function on Qd. Therefore
the Moreau envelope of f∗ is given by

Mµ
f∗(W ⊤x) = min

u∈Qd

1
2µ
∥W ⊤x− u∥2ℓ2

The Moreau decomposition theorem [11, Thm. 6.67] says

Mµ
f (W ⊤x) +M1/µ

f∗ (W ⊤x/µ) = 1
2µ
∥W ⊤x∥2ℓ2 .

Thus

Mµ
f (W ⊤x) = 1

2µ
∥W ⊤x∥2ℓ2 − min

u∈Qd

µ

2 ∥W
⊤x/µ− u∥2ℓ2 = max

u∈Qd

⟨W ⊤x, u⟩ − µ

2 ∥u∥
2
ℓ2 .

This shows that if we take pd(u) = 1
2∥u∥

2
ℓ2 , then fµ =Mµ

f (W ⊤·). ♢

4.1.5 Proof of error bounds for smoothing

Proof of Lemma 4.1.1. For f1 = ∥·∥ℓ1,R2 , first apply Proposition 4.1.4 with objective func-
tion ϕ =Mµ

f1
((W ′)⊤·) so that K = ∥W ∥2ℓ2/µ. Note that the Moreau envelope is always a

1
µ -smooth function [11, Thm. 6.60]. Then the error bound expressed in its complex equiva-
lent is

∥W ∗xn∥ℓ1,µ − ∥W
∗x∥ℓ1,µ ≤

2∥W ∥2ℓ2

µ(n + 1)2 ∥x− z0∥2ℓ2 , (4.1.25)

∀x :
√
∥y1 −Bx∥2ℓ2 + ∥y2 −Bx∥2ℓ2 ≤ η.

Now, the Huber function satisfies

Hµ(z) ≤ Hµ(z) ≤ Hµ(z) + µ

2 , ∀z ∈ C,

and thus for ∥z∥ℓ1,µ =
∑M

i=1 Hµ(zi) we get

∥z∥ℓ1,µ ≤ ∥z∥ℓ1 ≤ ∥z∥ℓ1,µ + Mµ

2 , ∀z ∈ CN . (4.1.26)

Combining this observation and the previous one gives

∥W ∗xn∥ℓ1 ≤ ∥W ∗xn∥ℓ1,µ + Mµ

2

≤ ∥W ∗x∥ℓ1,µ + 2∥W ∥2ℓ2

µ(n + 1)2 ∥x− z0∥2ℓ2 + Mµ

2
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≤ ∥W ∗x∥ℓ1 + 2∥W ∥2ℓ2

µ(n + 1)2 ∥x− z0∥2ℓ2 + Mµ

2 ,

which is what we wanted to show.

Remark 4.1.8. Here we consider an alternative proof of Lemma 4.1.1. We wish to highlight
that the Huber function inequalities arise from the Moreau envelope of globally Lipschitz
functions, and so these techniques can be used for nonsmooth problems that are more
general than QCBP. First we consider [11, Defn. 10.43], which is stated as follows.

Let a, b > 0. A convex function f : RN → R is called (a, b)-smoothable if for any µ > 0
there exists a convex differentiable function fµ : RN → R such that

1. fµ(x) ≤ f(x) ≤ fµ(x) + bµ for all x ∈ RN

2. fµ is a
µ -smooth

The function fµ is referred to as a 1
µ -smooth approximation of f with parameters (a, b), and

µ is referred to as the smoothing parameter.
The idea now is to use the fact that Lipschitz continuous functions have a 1

µ -smooth ap-
proximation by their Moreau envelope with parameter µ. This yields a proof of Lemma 4.1.1
summarized below.

Write f1 = ∥·∥ℓ1,R2 . For n ∈ N, observe that for any a, b ∈ Cn, we have

∣∣f1(a′)− f1(b′)
∣∣ = |∥a∥ℓ1 − ∥b∥ℓ1 | ≤ ∥a− b∥ℓ1 ≤

√
n∥a− b∥ℓ2 =

√
n∥a′ − b′∥ℓ2 .

Thus f1 is Lipschitz with constant
√

n. Combining [11, Thm. 10.51] and [11, Thm. 10.46(b)],
for all µ > 0 we have that

(f1)µ =Mµ
f1

((W ′)⊤·)

is a 1
µ -smooth approximation of f1 with parameters (∥W ′∥2ℓ2 , M/2). Now to get the re-

sult, apply Proposition 4.1.4 with ϕ = (f1)µ and use the definition of (a, b)-smoothable to
conclude

(f1)µ(xn)− (f1)µ(x) ≤ 2∥W ′∥2ℓ2

µ(n + 1)2 ∥x− z0∥2ℓ2 + Mµ

2 ,

∀x :
√
∥y′

1 −B′x∥2ℓ2 + ∥y′
2 −B′x∥2ℓ2 ≤ η.

Finally, express the error bound and constraint as their complex equivalents. ♢
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4.2 Recovery guarantees for TV-Fourier inverse problems

4.2.1 Image and gradient recovery via NESTA

Here we state and prove error bounds for reconstructing images and their gradient from
Fourier measurements under gradient sparsity. We do this in relation to the reconstruction
procedure of using stacked NESTA (Algorithm 2) for TV minimization (2.3.2).

Theorem 4.2.1 (Accuracy and stability of NESTA reconstruction, d = 1). Let d = 1,
0 < ϵ < 1, 2 ≤ s, m ≤ N , and

A =
[
B

B

]
, B = 1√

m
PΩF ∈ C|Ω|×N ,

be a subsampled Fourier matrix where Ω = Ω1 ∪ Ω2 with Ω1 ∼ Ber(JNK, m/2) and Ω2 ∼
Ber(JNK, m/2, p). Now if

m ≳ Γ(p) · s ·
(
log(Γ(p)Ns) · log2(s) · log(N) + log(2ϵ−1)

)
(4.2.1)

then the following holds with probability at least 1 − ϵ. For all x ∈ CN and y = Ax + e ∈
C2|Ω| with ∥e∥ℓ2 ≤ η for some η > 0, if xn ∈ CN is the nth iterate of Algorithm 2, with
input feasible point z0, sequences {αj}, {τj} from Lemma 4.1.1, matrix B and vectors
y = (y1, y2), then

∥V xn − V x∥ℓ2 ≲
σs(V x)ℓ1√

s
+ η + Nµ

2
√

s
+ 1

µ(n + 1)2√s
∥x− z0∥2ℓ2 , (4.2.2)

∥xn − x∥ℓ2√
N

≲
σs(V x)ℓ1√

s
+
(√

Γ(p) + 1
)

η + Nµ

2
√

s
+ 1

µ(n + 1)2√s
∥x− z0∥2ℓ2 . (4.2.3)

Note that the constants in ≲ do not depend on n.

Theorem 4.2.2 (Accuracy and stability of NESTA reconstruction, d ≥ 2). Let d ≥ 2,
0 < ϵ < 1, 2 ≤ s, m ≤ Nd, and

A =
[
B

B

]
, B = 1√

m
PΩF ∈ C|Ω|×Nd

,

be a subsampled Fourier matrix where Ω = Ω1 ∪ Ω2 with Ω1 ∼ Ber(JNdK, m/2) and Ω2 ∼
Ber(JNdK, m/2, p). Now if

m ≳d Γ(p) · s · log2(N) ·
(
log(Γ(p)N log2(N)s) · log2(s log2(N)) · log(N) + log(2ϵ−1)

)
(4.2.4)

then the following holds with probability at least 1− ϵ. For all x ∈ CNd and y = Ax + e ∈
C2|Ω| with ∥e∥ℓ2 ≤ η for some η > 0, if xn ∈ CNd is the nth iterate of Algorithm 2,
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with input feasible point z0, sequences {αj}, {τj} from Lemma 4.1.1, matrix B and vectors
y = (y1, y2), then

∥V xn − V x∥ℓ2 ≲
σs(V x)ℓ1√

s
+ dη + dNdµ

2
√

s
+ d

µ(n + 1)2√s
∥x− z0∥2ℓ2 , (4.2.5)

∥xn − x∥ℓ2 ≲d
σs(V x)ℓ1√

s
+
(√

Γ(p) + d

)
η + dNdµ

2
√

s
+ d

µ(n + 1)2√s
∥x− z0∥2ℓ2 .

(4.2.6)

Note that the constants in ≲ and ≲d do not depend on n.

The proof structure and arguments for both Theorems 4.2.1 and 4.2.2 directly combine
and adapt the proofs presented in [4, Sec. 7] and [5, Chap. 8.3]. For completeness and
considering modifications are needed, we present the proofs in full detail.

Proof of Theorems 4.2.1 and 4.2.2. The frequencies of indices Ω = Ω1 ∪ Ω2 are sampled
exactly twice by A, so writing Ω3 = Ω1△Ω2, we can express A as

A =


A1

A2

A3

 Ai = 1√
m

PΩiF , i = 1, 2, 3.

Note that it is valid to represent A in this way since the ℓ2-norm constraint of TV min-
imization (2.3.2) is invariant under unitary transformations (and thus, row permutations
common to both A and y). This reasoning allows us to interchange between other row
permutations of both A and y, including those that lead to the stacking form (4.1.5). This
allows one to apply Algorithm 2 to solve TV minimization.

Gradient recovery. Here Ω1 corresponds to Bernoulli uniform sampling, so applying
Lemma 3.2.1 with δ = 1/3, A1 satisfies the RIP of order 2s with constant δ2s ≤ 1/3 with
probability at least 1− ϵ/2, provided

m ≳d s ·
(
log(Ns) · log2(s) · log(N) + log(2ϵ−1)

)
.

This condition holds in both cases of d = 1 and d ≥ 2, given our assumed measurement
conditions (4.2.1) and (4.2.4). Note the choice of δ = 1/3 is arbitrary, as it is enough for
δ <
√

2− 1. By Lemma 2.1.5, A1 has the rNSP of order s with constants 0 < ρ < 1, γ > 0.
Define A

(d)
1 to be B in [4, Lem. SM1.4] with diagonal blocks A := A1. Thus, A

(d)
1 has

the rNSP of order s with constants ρ′ = ρ and γ′ =
√

dγ. Then the rNSP ℓ2-norm bound
of Lemma 2.1.3 holds with matrix A

(d)
1 , giving

∥V xn − V x∥ℓ2 ≤ C1

(2σs(V x)ℓ1 + ∥V xn∥ℓ1 − ∥V x∥ℓ1√
s

)
+ C2

√
d∥A(d)

1 (V xn − V x)∥ℓ2
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≲
σs(V x)ℓ1√

s
+ ∥V xn∥ℓ1 − ∥V x∥ℓ1√

s
+
√

d∥A(d)
1 (V xn − V x)∥ℓ2

where C1 = (3ρ+1)(ρ+1)
2(1−ρ) and C2 = (3ρ+5)γ

2(1−ρ) . To bound the A
(d)
1 term, we use the commuting

property of the Fourier matrix and circulant matrices. Specifically, we use the identity
F Vi = DiF [4, Lem. 7.1] where Di ∈ CNd×Nd is a diagonal matrix with ∥Di∥ℓ2 ≤ 2. Thus

∥A(d)
1 V (xn − x)∥ℓ2 =

√√√√ d∑
i=1
∥A1Vi(xn − x)∥2ℓ2

=

√√√√ d∑
i=1

∥∥∥∥ 1√
m

PΩ1F Vi(xn − x)
∥∥∥∥2

ℓ2

= 2
√

d

∥∥∥∥ 1√
m

PΩ1F (xn − x)
∥∥∥∥

ℓ2

= 2
√

d∥A1(xn − x)∥ℓ2

≤ 2
√

d∥A(xn − x)∥ℓ2

≤ 4
√

dη.

In the second last step, we used that both xn and x are feasible for TV minimization
(2.3.2). Next, to bound the term ∥V xn∥ℓ1 − ∥V x∥ℓ1 , we use the feasibility of x and apply
Lemma 4.1.1. Note from the commuting property, one has ∥Vi∥ℓ2 ≤ 2, hence

∥V ∥ℓ2 ≤

√√√√ d∑
i=1
∥Vi∥2ℓ2 ≤

√
4d = 2

√
d.

Combining everything gives

∥V xn − V x∥ℓ2 ≲
σs(V x)ℓ1√

s
+ 4dη + dNdµ

2
√

s
+ 8d

µ(n + 1)2√s
∥x− z0∥2ℓ2

and in turn (4.2.2) and (4.2.5).
Image recovery. Here we only consider d ≥ 2, since the proof of the case d = 1 is nearly

identical. The conditions of Lemma 3.2.5 are met, so we have with probability at least
1− ϵ/2 that

∥xn − x∥ℓ2 ≲d

√
Γ(p)∥A2(xn − x)∥ℓ2 + ∥xn − x∥TV√

s
. (4.2.7)

As established earlier, with probability at least 1 − ϵ/2, A
(d)
1 satisfies the rNSP of order s

with constants ρ′ = ρ and γ′ =
√

dγ. By the union bound, both observations simultaneously
hold with probability with at least 1− ϵ.
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To bound the first term, we apply the triangle inequality to obtain

∥A2(xn − x)∥ℓ2 ≤ ∥A(xn − x)∥ℓ2 ≤ 2η.

For the second term, noting that ∥xn − x∥TV = ∥V xn − V x∥ℓ1 and using the rNSP ℓ1-norm
bound of Lemma 2.1.3 with the matrix A

(d)
1 , one obtains

∥V xn − V x∥ℓ1 ≤ C3(2σs(V x)ℓ1 + ∥V xn∥ℓ1 − ∥V x∥ℓ1) + C4
√

d
√

s∥A(d)
1 (V xn − V x)∥ℓ2

≲ σs(V x)ℓ1 + ∥V xn∥ℓ1 − ∥V x∥ℓ1 +
√

d
√

s∥A(d)
1 (V xn − V x)∥ℓ2 .

where C3 = 1+ρ
1−ρ and C4 = 2γ

1−ρ . Now apply the same bounds to ∥A(d)
1 V (xn − x)∥ℓ2 and

∥V xn∥ℓ1 − ∥V x∥ℓ1 as in the gradient recovery case, yielding

∥xn − x∥TV = ∥V xn − V x∥ℓ1 ≲ σs(V x)ℓ1 + d
√

sη + dNdµ

2 + d

µ(n + 1)2 ∥x− z0∥2ℓ2 .

Using this to bound (4.2.7) gives (4.2.6).

4.3 Restart scheme to accelerate reconstruction

To motivate acceleration of reconstruction, consider the image reconstruction error bound
(4.2.6) from Theorem 4.2.2. For fixed n, minimizing this quantity with respect to µ yields

µ =
√

2∥x− z0∥ℓ2

Nd/2(n + 1)
.

Substituting this value of µ into the bound (4.2.6) gives

∥xn − x∥ℓ2 ≲d
σs(V x)ℓ1√

s
+
(√

Γ(p) + d

)
η +

√
2dNd/2

(n + 1)
√

s
∥x− z0∥ℓ2 ,

thus the reconstruction error decays with order O(n−1) down to the model class distance
σs(V x)ℓ1 and noise level η. This sublinear decay in error also occurs in practice, e.g. see
Section 6.2. This motivates the need to accelerate the reconstruction, which would result in
NESTANets using substantially fewer layers.

A ‘restart scheme’ refers to an algorithmic framework that repeatedly restarts an op-
timization algorithm, possibly altering initial parameters. Under quite general conditions
on the optimization problem [3], a restart scheme can accelerate the convergence rate of a
first-order method. This is particularly useful for nonsmooth problems (e.g. TV minimiza-
tion), where first-order methods only produce sublinear rates in theory and practice [19,74].
As shown in [3,30,75], many compressed sensing problems are amenable to acceleration by
restarts and observe a key performance gain from sublinear to linear (i.e. exponential) decay.
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Algorithm 5: Restarted stacked NESTA for QCBP.
Input : Initial point x⋆

0, sequences {µk}t+1
k=1, {nk}t+1

k=1, and number of restarts t.
Output: The vector x⋆

t+1, which estimates a minimizer of (2.2.1).
1 for k = 1, . . . , t + 1 do
2 Set x⋆

k as the output of stacked NESTA (Algorithm 2) with initial point x⋆
k−1,

smoothing parameter µk and number of iterations nk.
3 end

To motivate restarting NESTA, one observes the recursive nature of the image error
formulas in Theorems 4.2.1 and 4.2.2 in terms of the error in the initial guess. The restart
procedure starts by running NESTA with initial guess z0 and smoothing parameter µ1

for a fixed number of iterations, say n1. Then we feed the output as an initial guess to
a new instance of NESTA with smoothing parameter µ2 and n2 iterations. This repeated
reinitialization, or restarting, is performed for finitely many steps. The restart scheme is
summarized in Algorithm 5.

We can apply the same approach found in [75] to choose the smoothing parameters {µk}
and inner iterations {nk} that guarantee convergence acceleration, by using Theorems 4.2.1
and 4.2.2. For this, we introduce and use the notation

CSs,d(z, p, η) = σs(z)ℓ1√
s

+
(√

Γ(p) + d

)
η,

and refer to this quantity as the compressed sensing error. We now state the accuracy and
stability results for Fourier imaging via restarted NESTA.

Theorem 4.3.1 (Performance of restarted NESTA reconstruction, d = 1). Consider d = 1
and A, Ω, p, ϵ, s, m, N , η from Theorem 4.2.1 and suppose the measurement condition
(4.2.1) holds. Then the following holds with probability at least 1 − ϵ. There is a constant
C > 0 such that for all x ∈ CN and y = Ax + e ∈ C2|Ω| with ∥e∥ℓ2 ≤ η for some η > 0,
and all 0 < r < 1, one has the following. Define

ζ = C · CSs,1(V x, p, η), µk = r
√

s

CN
εk−1, nk =

⌈√
2CN

r
√

s

⌉
− 1,

where εk is a sequence defined recursively by

ε0 = ∥x∥ℓ2√
N

, εk+1 = rεk + ζ, k ≥ 0.

Let PQ : CN → CN denote the orthogonal projection map of

Q = {z ∈ CN : ∥Az − y∥ℓ2 ≤ η}.
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Then applying Algorithm 5 with these values of µk and nk, x⋆
0 = PQ(0), gives iterates {x⋆

k}
satisfying

∥x⋆
k − x∥ℓ2√

N
≤ εk, εk+1 = rk+1 ∥x∥ℓ2√

N
+ 1− rk+1

1− r
ζ, k ≥ 0.

Theorem 4.3.2 (Performance of restarted NESTA reconstruction, d ≥ 2). Consider d ≥ 2
and A, Ω, p, ϵ, s, m, Nd, η from Theorem 4.2.2 and suppose the measurement condition
(4.2.4) holds. Then the following holds with probability at least 1− ϵ. There is a constant C

depending on d such that for all x ∈ CNd and y = Ax + e ∈ C2|Ω| with ∥e∥ℓ2 ≤ η for some
η > 0, and all 0 < r < 1, one has the following. Define

ζ = C · CSs,d(V x, p, η), µk = r
√

s

CdNd
εk−1, nk =

⌈√
2CdNd/2

r
√

s

⌉
− 1,

where εk is a sequence defined recursively by

ε0 = ∥x∥ℓ2 , εk+1 = rεk + ζ, k ≥ 0.

Let PQ : CNd → CNd denote the orthogonal projection map of

Q = {z ∈ CNd : ∥Az − y∥ℓ2 ≤ η}.

Then applying Algorithm 5 with these values of µk and nk, x⋆
0 = PQ(0), gives iterates {x⋆

k}
satisfying

∥x⋆
k − x∥ℓ2 ≤ εk, εk+1 = rk+1∥x∥ℓ2 + 1− rk+1

1− r
ζ, k ≥ 0.

Proof of Theorems 4.3.1 and 4.3.2. Here we only prove the case when d ≥ 2, since the d = 1
case is very similar. The formula for εk follows from the recurrence relation. Moreover, the
conditions of Theorem 4.2.2 are satisfied, so the bound (4.2.6) holds with probability 1− ϵ.
Let C denote the constant of ≲d in (4.2.6).

Now we proceed by induction on k to prove the restart scheme error bound. For k = 0,
note that x ∈ Q and Q is closed and convex. By the non-expansiveness property of PQ (for
instance, see [11, Thm. 6.41]) we have

∥x⋆
0 − x∥ℓ2 = ∥PQ(0)− PQ(x)∥ℓ2 ≤ ∥x∥ℓ2 = ε0,

which establishes the base case.
Suppose the result now holds for k ≥ 0. Then by (4.2.6) we have

∥x⋆
k+1 − x∥

ℓ2 ≤ ζ + CdNdµk+1
2
√

s
+ Cd

µk+1(nk+1 + 1)2√s
ε2

k. (4.3.1)
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By definition of µk+1 and nk+1 we have

CdNdµk+1
2
√

s
= r

2εk,

and

Cd

µk+1(nk+1 + 1)2√s
ε2

k = C2d2Nd

(nk+1 + 1)2rs
εk ≤

r

2εk.

Hence (4.3.1) gives

∥x⋆
k+1 − x∥

ℓ2 ≤ ζ + rεk = εk+1,

completing the proof.

Remark 4.3.3. The orthogonal projection map PQ is obtained from the stacked NESTA
derivation in Section 4.1.3. Explicitly we have

PQ(u) = λ

c
B∗(y1 + y2 − 2Bu) + u, λ = max

0,
1
2

1−

√
2η2 − ∥y1 − y2∥2ℓ2

∥y1 + y2 − 2Bu∥ℓ2

 .

We note that the orthogonal projection of the zero vector as the initial point x⋆
0 is done

for convenience. Other starting points can be used with minor adjustment to the previous
results. ♢

To summarize, Theorems 4.3.1 and 4.3.2 describe the parameters {µk} and {nk} we
sought for. They ensure that the restart scheme (Algorithm 5) produces iterates {x⋆

k} for
which the image reconstruction error ∥x⋆

k − x∥ℓ2 decays exponentially in k down to a finite
tolerance proportional to ζ. The quantity ζ is itself proportional to the compressed sensing
error CSs,d(V x, p, η), thus yielding the desired recovery guarantees. Lastly, there are also
a few things to note about the parameter choices. First, the inner iterations nk does not
depend on k, so it is constant. Second, the smoothing parameters µk are proportional to
the predefined error bound εk−1, hence they are adjusted to decay exponentially in each
restart k. Third, both nk and µk depend on constants that are generally unknown, such as
the sparsity s and the constant C, which itself depends on rNSP constants of A.
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Chapter 5

Neural networks via unrolling
optimization algorithms

For this chapter, we detail the construction of NESTANets and prove the main result
of this thesis, Theorem 1.3.1. In other words, we provide a stable, accurate and efficient
neural network construction for Fourier imaging with a gradient-sparsity model, by unrolling
restarted stacked NESTA. The unrolling construction is a minor modification of the one
found in [75, Sec. 4.2], and thus there is significant overlap. We nonetheless provide all the
proofs here for completeness.

5.1 Class of neural networks

For unrolling, we consider and restate verbatim the neural network architectures described
in [5, Sec. 21.3.2]. These are complex-valued feedforward neural networks N : Cm → CN of
the form

N (y) = A(L) ◦ σ(L−1) ◦A(L−1) ◦ · · · ◦ σ(1) ◦A(1)(y),

where L ≥ 2, and for each l = 1, . . . , L, A(l) : Cnl−1 → Cnl is an affine map of the form

A(l)(x) = W (l)x + b(l)(y), W (l) ∈ Cnl×nl−1 ,

whose biases b(l)(y) are themselves an affine map of the input y, i.e.

b(l)(y) = R(l)y + c(l), R(l) ∈ Cnl×m, c(l) ∈ Cnl .

Here n0 = m and nL = N . The activation functions σ(l) : Cnl → Cnl have one of the two
following forms:

1. There is an index set I(l) ⊆ {1, . . . , nl} such that σ(l) acts componentwise on those
components of the input vector with indices in I(l) while leaving the rest unchanged.
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2. There is a nonlinear function ρ(l) : C→ C such that, if the input vector x to the layer
takes the form x = (x1, u, v), where x1 is a scalar and u, v are (possibly) vectors,
then σ(l)(x) = (0, ρ(l)(x1)u, v).

We denote the class of networks of this form as N∗ = N∗
n,L,q, where

n = (n0, n1, . . . , nL−1, nL), n0 = m, nL = N,

with L denoting the number of layers and q the number of different nonlinear activation
functions used.

While the class N∗ and specification of activation functions is broader than what is often
seen with common feed-forward neural network architectures, it is both useful and standard
when unrolling optimization algorithms. For more information, see [5, Sec. 21.3.2] and [30].

5.2 Unrolled NESTA construction

We adopt the same unrolling approach of NESTANets from [75, Sec. 4.2]. First we construct
networks for the update steps of stacked NESTA (Algorithm 2), then combine them to
compute one iteration of stacked NESTA. Finally, this is used to unroll n iterations of
stacked NESTA as a network, and in turn, unroll restarted NESTA. Given that stacked
NESTA differs from NESTA presented in [75], the proofs require slight modification. We
present them here for completeness.

Lemma 5.2.1. Let z1, z2 ∈ CN , W ∈ CN×M , α ∈ C, and Tµ : CM → CM be the Huber
function gradient (4.1.4). Then the map C2N → CN defined by

(
z1

z2

)
7→ z1 − αWTµ(W ∗z2)

can be expressed as a neural network N ∈ N∗
n,2,1 with n = (2N, N + M, N) and with all

biases equal to zero, i.e. independent of the input.

Proof. Write the map as the following sequence of maps(
z1

z2

)
(a)7−→

(
z1

W ∗z2

)
(b)7−→

(
z1

Tµ(W ∗z2)

)
(c)7−→ z1 − αWTµ(W ∗z2).

Here (a) and (c) are linear maps, noting that α ∈ C and W ∈ CN×M are fixed. The map
(b) applies the gradient of the Huber function with fixed parameter µ, componentwise to
the M entries of W ∗z2. Such a map corresponds to a nonlinear activation function of type
(i). This gives the result.

56



Lemma 5.2.2. Fix η > 0, B ∈ C
m
2 ×N and y1, y2 ∈ C

m
2 . The map CN → C defined by

q 7→ max

0,
1
2

1−

√
2η2 − ∥y1 − y2∥2ℓ2

∥y1 + y2 − 2Bq∥ℓ2


can be expressed as a neural network N ∈ N∗

n,4,3 with n = (N, m, 2, 1, 1) and biases depend-
ing affinely on y1 and y2, but otherwise independent of the input.

Proof. For brevity, let σ1 denote the squaring activation function x 7→ |x|2 and σ2 denote
the nonlinear activation function x 7→ max

{
0, 1

2(1− x−1/2)
}

. Then we can express the map
in question as the following sequence

q
(a)7−→

(
y1 − y2

y1 + y2 − 2Bq

)
(b)7−→

(
σ1(y1 − y2)

σ1(y1 + y2 − 2Bq)

)
(c)7−→

(
2η2 − 1⊤σ1(y1 − y2)
1⊤σ1(y1 + y2 − 2Bq)

)

(d)7−→

 0
1⊤σ1(y1+y2−2Bq)
2η2−1⊤σ1(y1−y2)

 (e)7−→ 1⊤σ1(y1 + y2 − 2Bq)
2η2 − 1⊤σ1(y1 − y2)

(f)7−→ σ2

(
1⊤σ1(y1 + y2 − 2Bq)
2η2 − 1⊤σ1(y1 − y2)

)

Here 1 denotes a vector of ones, where for the above calculation they have m/2 entries.
Moreover, we have the identity 1⊤σ1(x) = ∥x∥2ℓ2 . Now, (a) and (c) are affine maps and (e)
is a linear map. The maps (b) and (f) apply the nonlinear activation functions σ1 and σ2,
respectively. Both (b) and (f) are of type (i). The map (d) applies the nonlinear activation
function x 7→ x−1, which corresponds to an activation function of type (ii). Finally, to ensure
the above sequence of maps corresponds to a network in N∗

n,4,3, the last map must be affine.
We achieve this by appending the identity map to the end of the sequence. Combining these
facts gives the desired neural network.

Lemma 5.2.3. Let λ, c ∈ C, q ∈ CN , B ∈ C
m
2 ×N , and y1, y2 ∈ C

m
2 . Then the map

CN+1 → CN described by (
λ

q

)
7→ λ

c
B∗(y1 + y2 − 2Bq) + q

can be expressed as a neural network N ∈ N∗
n,2,1 with n = (N + 1, 2N + 1, N) and biases

depending affinely on y1 and y2, but otherwise independent of the input.

Proof. Considering the sequence

(
λ

q

)
(a)7−→


λ

1
c B∗(y1 + y2 − 2Bq)

q

 (b)7−→


0

λ
c B∗(y1 + y2 − 2Bq)

q


(c)7−→ λ

c
B∗(y1 + y2 − 2Bq) + q
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the result follows from observing that the map (a) is affine, (c) is linear, and (b) uses a
nonlinear activation function of type (ii) corresponding to the identity map.

Using the aforementioned lemmas, we now construct a network that computes one iter-
ative step of Algorithm 2. Recall that the nth iteration performs the update zn → zn+1. To
simplify writing this as a neural network, we keep track of the value of q used to compute
the intermediate vector vn, as this value depends on not just zn, but also z0, . . . , zn−1.
Therefore, the map we want to derive a network for is(

q
(n−1)
v

zn

)
7→
(

q
(n)
v

zn+1

)
. (5.2.1)

The vector q
(k)
v refers to the value of q used to calculate vk – see line 7 of Algorithm 2. We

analogously define the vectors and scalars q
(k)
x , λ

(k)
v and λ

(k)
x to be q and λ used for xk and

vk, which is inferred from the notation. For convenience, when n = 0 we set q
(−1)
v = z0,

where z0 is the initial vector of Algorithm 2.

Lemma 5.2.4. The update step (5.2.1) can be performed by a neural network N ∈ N∗
n,7,5

where

n = (2N, 2N + M, 2N + 3m/2, 2N + 3, 2N + 2, 3N + 2, 3N + 1, 2N)

and the biases depend affinely on y1 and y2 only. Moreover, the nonlinear activations are
independent of n.

Proof. First we write (5.2.1) as the sequence of maps

(
q

(n−1)
v

zn

)
T17−→

q
(n)
v

q
(n)
x

 T27−→


λ

(n)
v

λ
(n)
x

q
(n)
v

q
(n)
x


T37−→

(
q

(n)
v

zn+1

)
.

For T1, we know that the corresponding Algorithm 2 updates are

q(n)
v = q(n−1)

v − µ

∥W ∥2ℓ2
αnWTµ(W ∗zn), (5.2.2)

q(n)
x = zn −

µ

∥W ∥2ℓ2
WTµ(W ∗zn), (5.2.3)

for all n ≥ 0. By Lemma 5.2.1, (5.2.2) and (5.2.3) can be expressed using neural net-
works N (1)

vn ,N (1)
xn ∈ N∗

(2N,N+M,N),2,1, where N (1)
vn uses α := µαn/∥W ∥2ℓ2 and N (1)

xn uses
α := µ/∥W ∥2ℓ2 . Thus

q(n)
v = N (1)

vn
(q(n−1)

v , zn), q(n)
x = N (1)

xn
(zn, zn).
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These networks can be run in parallel and be embedded into a larger network that
computes T1. We do this by stacking the layers of N (1)

vn and N (1)
xn on top of each other and

merging redundant copies of vectors and their network connections. Any missing connections
simply correspond to zero weights. Note that a permutation of elements in the layers would
simply be a linear mapping applied to the affine map for that layer before the nonlinear
activation. This procedure yields the map sequence (with affine and nonlinear activations
combined into one map)

(
q

(n−1)
v

zn

)
7→


q

(n−1)
v

zn

Tµ(W ∗zn)

 7→
q

(n)
v

q
(n)
x

 .

Note that the only nonlinear activations used here are of type (i). The above map defines a
network N (1) ∈ N∗

(2N,2N+M,2N),2,1 that computes T1.
Regarding map T2, by Lemma 5.2.2 and the definition of Algorithm 2, λ

(n)
v and λ

(n)
x

each can be expressed as the output of a network N (2)
λ ∈ N∗

(N,m,2,1,1),4,3, where y1, y2 in the
lemma corresponds to y1, y2 here. Thus

λ(n)
v = N (2)

λ (q(n)
v ), λ(n)

x = N (2)
λ (q(n)

x ). (5.2.4)

Adopting the same strategy as for map T1, we construct a network computing both λ
(n)
v

and λ
(n)
x in parallel. This gives the network layer sequence (with affine map and nonlinear

activation combined per mapping)

q
(n)
v

q
(n)
x

 7→


σ1(y1 − y2)
σ1(y1 + y2 − 2Bq

(n)
v )

σ1(y1 + y2 − 2Bq
(n)
x )

q
(n)
v

q
(n)
x


7→



0
1⊤σ1(y1+y2−2Bq

(n)
v )

2η2−1⊤σ1(y1−y2)
1⊤σ1(y1+y2−2Bq

(n)
x )

2η2−1⊤σ1(y1−y2)
q

(n)
v

q
(n)
x


7→


λ

(n)
v

λ
(n)
x

q
(n)
v

q
(n)
x

 .

Note that σ1 is the squaring activation function from Lemma 5.2.2. This map sequence
embeds two copies of N (2)

λ and four identity maps. Note that we have implicitly included
an identity map as the final affine map of the network. Moreover, the single type (ii) acti-
vation function in N (2)

λ is applied to bias terms, and is thus independent of the input. In
both evaluations of (5.2.4), the scalar input to the type (ii) activation are the same. By
construction, T2 is computed by a network N (2) ∈ N∗

a,4,3 where

a = (2N, 2N + 3m/2, 2N + 3, 2N + 2, 2N + 2) ,

with biases as affine maps of y1 and y2.
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Lastly, we construct a network that computes T3. Consider T3 as the sequence of maps


λ

(n)
v

λ
(n)
x

q
(n)
v

q
(n)
x


(a)7−→



0
λ

(n)
x
c B∗(y1 + y2 − 2Bq

(n)
x )

q
(n)
x

λ
(n)
v

q
(n)
v


(b)7−→


0

λ
(n)
v
c B∗(y1 + y2 − 2Bq

(n)
v )

xn

q
(n)
v


(c)7−→

(
q

(n)
v

zn+1

)
.

Using Lemma 5.2.3, we deduce the following. The map (a) first applies an affine map, then
uses a nonlinear activation of type (ii) corresponding to the identity map using the scalar
λ

(n)
x . Similar to (a), map (b) first performs an affine mapping, then uses the same nonlinear

activation as in (a), but instead using the scalar λ
(n)
v . Lastly, the final map (c) is linear,

noting that zn+1 = τnvn+(1−τn)xn. Observe that the bias terms of the affine mappings are
affine in y1 and y2. This gives us the desired network N (3) corresponding to T3, belonging
to the class N (3) ∈ N∗

b,3,1 with

b = (2N + 2, 3N + 2, 3N + 1, 2N).

Composing the networks to form N = N (3) ◦ N (2) ◦ N (1) ∈ N∗
n,7,5, noting that in the

composition, we merge each set of consecutively composed affine maps into a single affine
map, gives a network that computes one iteration of Algorithm 2, i.e. (5.2.1), at any step
n. Moreover, N has the property that all of its bias terms are affine maps of y1 and y2, and
the nonlinear activations do not depend on n. This completes the proof.

Theorem 5.2.5 (Unrolled NESTA). For n ≥ 0, let xn be the nth iterate produced by
NESTA (Algorithm 2) with input y = (y1, y2) ∈ Cm, so that y1, y2 ∈ C

m
2 , and initial

point z0. Then there exists a neural network N ∈ N∗
n,6(n+1)+1,5 with activation functions

independent of n, and

n = (m, 2N + M, 2N + 3m/2, 2N + 3, 2N + 2, 3N + 2, 3N + 1︸ ︷︷ ︸
n + 1 times

, N),

such that

xn = N (y).

Proof. Let ϕ : Cm → C2N be the affine map defined by y 7→ (z0, z0), and N0,N1, . . . ,Nn−1

be copies of the network in Lemma 5.2.4. Since we plan to compose N0 with ϕ, note that this
defines q

(−1)
v = z0. Moreover, define Nn as a modification of the network in Lemma 5.2.4

by changing the linear map of its last layer to output xn instead of (q(n)
v , zn+1). This is

done by omitting q
(n)
v and setting τn to be zero, since zn+1 = τnvn + (1− τn)xn. Then the
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composition
N = Nn ◦ Nn−1 ◦ · · · ◦ N0 ◦ ϕ,

where each set of consecutively composed affine maps are merged into a single affine map,
gives the desired network.

Theorem 5.2.6 (Unrolled restarted NESTA). Let x⋆
t+1 be the output of restarted NESTA

(Algorithm 5) with t ≥ 0 restarts and nk = n ≥ 0 for all k = 1, . . . , t + 1 corresponding to
a fixed number of NESTA iterations for each restart. Additionally, let y = (y1, y2) ∈ Cm

be the input, with y1, y2 ∈ C
m
2 , and x⋆

0 the initial point. Then there exists a neural network
N ∈ N∗

n,6(t+1)(n+1)+1,5 with activation functions independent of n and t, and

n = (m, 2N + M, 2N + 3m/2, 2N + 3, 2N + 2, 3N + 2, 3N + 1︸ ︷︷ ︸
(t + 1)(n + 1) times

, N)

such that

x⋆
t+1 = N (y).

Proof. From the proof of Theorem 5.2.5, consider ϕ,N0, . . . ,Nn−1,Nn. Define Ñn as a mod-
ification of Nn that outputs (xn, xn) instead of xn. Then defining the compositions

N ⋆
k = Ñn ◦ Nn−1 ◦ · · · ◦ N0, k = 1, . . . , t,

N ⋆
t+1 = Nn ◦ Nn−1 ◦ · · · ◦ N0,

the desired network is
N = N ⋆

t+1 ◦ N ⋆
t ◦ · · · ◦ N ⋆

1 ◦ ϕ,

with each set of consecutively composed affine maps merged into a single affine map.

5.3 Stable, accurate, and efficient neural network for TV-
Fourier problems

Reiterating the setup of Chapter 1, we define the model class of Fourier measurements we
seek to recover from gradient-sparse images. Fix d ≥ 1, η > 0, 1 ≤ s ≤ Nd and define the
compressed sensing error

CSs,d(V x, η) = σs(V x)ℓ1√
s

+
(

d +
√

log(N)
)

η.

Given χ > 0 and A ∈ Cm×Nd , we write

IV ,χ,η =
{

(x, e) ∈ CNd × Cm : ∥x∥ℓ2 ≤ 1, ∥e∥ℓ2 ≤ η, CSs,d(V x, η) ≤ χ
}

,
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and define the class of measurement vectors

MA,V ,χ,η = {y = Ax + e ∈ Cm : (x, e) ∈ IV ,χ,η} . (5.3.1)

We simply write I = IV ,χ,η and M = MA,V ,χ,η when the parameters can be inferred from
context. To remind the reader, the interpretation of M is that it defines noisy measurement
vectors y = Ax + e from images x ∈ CNd that are approximately gradient-sparse, i.e.
σs(V x)ℓ1/

√
s ≤ χ, and noise vectors e with bounded ℓ2-norm, i.e. ∥e∥ℓ2 ≤ η ≤ χ. In

essence, M formalizes the Fourier inverse problems that can be solved well (in the sense of
χ) via TV minimization.

The following two theorems are the main results of this thesis. In particular, they imply
the previously stated Theorem 1.3.1 from Chapter 1.

Theorem 5.3.1 (Stable, accurate and efficient neural networks for Fourier imaging, d = 1).
Let d = 1, 0 < ϵ < 1, 2 ≤ s, m ≤ N , and p̂ be the Bernoulli vector from Section 3.2.3.
Define the subsampled Fourier matrix

A =
[
B

B

]
, B = 1√

m
PΩF ∈ C|Ω|×N ,

where Ω = Ω1∪Ω2 satisfies Ω1 ∼ Ber(JNK, m/2) and Ω2 ∼ Ber(JNK, m/2, p̂), with E(|Ω|) =
m
(
1− m

4N

)
≍ m from Section 3.3. In addition, let η ≥ 0, χ > 0 and consider the class

M = MA,V ,χ,η defined in (5.3.1). Then the following holds with probability at least 1 − ϵ

provided that

m ≳ log(N) · s ·
(
log(N log(N)s) · log2(s) · log(N) + log(2ϵ−1)

)
.

For every 0 < r < 1 and k ≥ 1 one can construct a neural network N : C2|Ω| → CN such
that

∥x−N (y)∥ℓ2√
N

≤ c1 · χ + rk, ∀y = Ax + e ∈M,

where c1 only depends on r. The network depth is bounded by c2 ·
√

N
s · k, where c2 only

depends on r, and the network width is bounded by 4N .

Theorem 5.3.2 (Stable, accurate and efficient neural networks for Fourier imaging, d ≥ 2).
Let d ≥ 2, 0 < ϵ < 1, 2 ≤ s, m ≤ Nd, and p̂ be the Bernoulli vector from Section 3.2.3.
Define the subsampled Fourier matrix

A =
[
B

B

]
, B = 1√

m
PΩF ∈ C|Ω|×Nd

,
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where Ω = Ω1 ∪ Ω2 satisfies Ω1 ∼ Ber(JNdK, m/2) and Ω2 ∼ Ber(JNdK, m/2, p̂), with
E(|Ω|) = m

(
1− m

4Nd

)
≍ m from Section 3.3. In addition, let η ≥ 0, χ > 0 and consider

the class M = MA,V ,χ,η defined in (5.3.1). Then the following holds with probability at least
1− ϵ provided that

m ≳d log3(N) · s ·
(
log(N log3(N)s) · log2(s log2(N)) · log(N) + log(2ϵ−1)

)
. (5.3.2)

For every 0 < r < 1 and k ≥ 1 one can construct a neural network N : C2|Ω| → CNd such
that

∥x−N (y)∥ℓ2 ≤ c1 · χ + rk, ∀y = Ax + e ∈M,

where c1 only depends on r and d. The network depth is bounded by c2 ·
√

Nd

s · k, where c2

only depends on r and d, and the network width is bounded by (3 + d)Nd.

Proofs of Theorems 5.3.1 and 5.3.2. We only prove the result for d ≥ 2 since the d = 1 case
is very similar. What follows is a slight modification of the proof of [75, Thm. 1].

Fix k ≥ 1 and 0 < r < 1. Let p = p̂ be the near-optimal Bernoulli vector from
Section 3.2.3 and C the constant stated from Theorem 4.3.2. Consider Algorithm 5 defined
with K = k − 1 restarts and parameters specified in Theorem 4.3.2. By Theorem 5.2.6,
there exists a neural network N ∈ N∗

n,6k(n+1)+1,5 with

n =
⌈√

2CdNd/2

r
√

s

⌉
− 1,

n = (2|Ω|, (2 + d)Nd, 2Nd + 3m/2, 2Nd + 3, 2Nd + 2, 3Nd + 2, 3Nd + 1︸ ︷︷ ︸
k(n + 1) times

, Nd),

satisfying: for any input y to restarted NESTA, the final iterate x⋆
k is computed by N ,

i.e. N (y) = x⋆
k. Now we specify the input y ∈ MA,V ,χ,η so that y = Ax + e for some

(x, e) ∈ IV ,χ,η. Then using N (y) = x⋆
k and Theorem 4.3.2, we have

∥x−N (y)∥ℓ2 ≤ rk∥x∥ℓ2 + 1− rk

1− r
ζ.

By definition of the class M and ζ, we have ∥x∥ℓ2 ≤ 1 and ζ ≤ C · CS(V x, p̂, η) ≤ Cχ.
Using this we further bound the error between x and N (y) to get

∥x−N (y)∥ℓ2 ≤ rk + 1− rk

1− r
Cχ ≤ rk + Cχ

1− r
.

Thus c1 and c2 as in the statement of the main result (Theorem 5.3.2) are identified by

c1 = C

1− r
, c2 = 6

√
2Cd

r
+ 7.
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Reading off the layer sizes in n, the width of the network is bounded above by (3 + d)Nd.
Finally, y was arbitrary. Using Γ(p̂) ≲d log(N), the measurement condition (5.3.2) is suf-
ficient for Theorem 4.3.2 to hold with probability at least 1 − ϵ, so the main result holds
with probability at least 1− ϵ. This completes the proof.

Let us end this chapter by going over what we have stated and proven. In essence, these
results tell us what we sought for: we can construct efficient neural networks with stable
and accurate recovery of gradient-sparse images from Fourier measurements. In particular,
such networks match the state-of-the-art performance of model-based methods based on
compressed sensing, with high probability.

The error bounds show that the image reconstruction is guaranteed to be within an error
proportional to χ and a term decaying exponentially in k. Choosing k = ⌈|log(χ)/ log(1/r)|⌉
yields a network that can perform image reconstruction within an error proportional to the
desired error χ. This is a measure of efficiency for our network construction, where to
guarantee reconstruction within error proportional to χ, the network depth should scale
logarithmically in χ. Repeating once more for emphasis, the parameter χ describes the
model class of measurements, with recovery error up to distance from the model class of
gradient-sparse images (i.e. accuracy in the sense of σs(V x)ℓ1/

√
s ≤ χ) and the noise level

(i.e. stability in the sense that ∥e∥ℓ2 ≤ η ≤ χ).
As stated before, this is precisely analogous to [30, Thm. 4] and [75, Thm. 1]. In addition,

the network construction in [30, Thm. 3] has a depth proportional to np layers, where n

is the restart number and p ∝ ∥A∥ℓ2 . If A ∈ Cm×Nd has the RIP, which is the condition
we consider when building our random measurement matrices, then ∥A∥ℓ2 ≲

√
Nd/s by [5,

Rem. 8.8]. This is comparable to the number of layers we have. The same can be said of
the network construction in [75].

Finally, in relation to Theorem 1.3.1, there are a few points to make. First, the results
of Theorems 5.3.1 and 5.3.2 provide an explicit description for the sampling scheme used.
Second, the results hold for a general decay factor 0 < r < 1, rather than only r = e−1

in Theorem 1.3.1. The latter is motivated by the discussion in Section 6.3 regarding the
choice of r for numerical experiments. Third, from the discussion in Section 3.3, we have
E(|Ω|) ≲ m and E(|Ω|) ≳ m, yielding the statement E(|Ω|) ≍ m in Theorem 1.3.1. Despite
|Ω| being a random variable, deviating from its expected value occurs with exponentially
decaying probability.
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Chapter 6

Numerical experiments

In this chapter, we showcase several numerical experiments that aim to reaffirm theoret-
ical results and otherwise explore gaps between theory and practice. Our presentation is
in tandem with [75, Sec. 6], and has considerable overlap with the experiments presented
and discussion found therein. For the first experiment, we demonstrate that the exponential
decay in reconstruction error occurs as in the error bound of Theorem 5.3.2. Second, we
compare the performance of NESTANets with and without restarts (Algorithms 2 and 5,
respectively). Third, we discuss and provide insight on hyperparameter tuning of stacked
NESTA, accompanied by two experiments for empirical justification. Lastly, the fifth ex-
periment demonstrates stability of NESTANets by computing a worst-case perturbation of
the measurements.

6.1 Setup

Our main example for the experiments is Fourier imaging in two dimensions. Here the
ground truth image x ∈ CN2 and the measurement matrix

A =
[
B

B

]
, B = 1√

m
PΩF ,

is a subsampled Fourier matrix with F ∈ CN2×N2 . The sampling scheme Ω = Ω1 ∪Ω2 con-
forms to the stacking scheme described in Theorem 5.3.2 (see also Section 3.3). That is, Ω1

and Ω2 are Bernoulli uniform and near-optimal variable sampling patterns (Section 3.2.3),
respectively. By design, we can use NESTANets, i.e. restarted stacked NESTA, to solve the
TV minimization problem

min
z∈CN2

∥z∥TV ≡ ∥V z∥ℓ1 subject to ∥Az − y∥ℓ2 ≤ η,

where y are the noisy measurements corresponding to Ω and V ∈ R2N2×N2 is the 2-D
discrete gradient operator (Section 2.3.4). In particular, B satisfies BB∗ = N2

m I, since
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F F ∗ = N2I and PΩ is a row selector matrix. This is the required condition of B to use
Algorithm 2, and in turn, Algorithm 5.

We implement numerical experiments for NESTANets (unrolled NESTA and restarted
NESTA from Algorithms 2 and 5), with a stacking scheme for Fourier imaging via TV
minimization. The implementation is a fork of the experiments in [75], and is written in
Python using PyTorch [79]. PyTorch is an open-source machine learning Python package
that offers a wide scope of tools to implement neural networks and manipulate arrays.
PyTorch also supports GPU acceleration and automatic differentiation, the former of which
enables scaling up the problem size and computing a fast Fourier transform, and the latter
is crucial to running stability experiments for NESTANets. The code and its respective
documentation can be found in

https://github.com/mneyrane/MSc-thesis-NESTAnets.

A key aspect to designing the experiments is choosing hyperparameters, for which there
are several, and reducing the number of them if possible. The first hyperparameter pertains
to the problem definition itself, namely the sampling rate m/Nd (i.e. the target number of
measurements). Note that m defines the expected number of measurements produced by the
uniform and variable density sampling patterns. The second set of hyperparameters define
the solver. For restarted NESTA, these are the number of restarts t, inner iteration sequence
{nk}, smoothing parameter sequence {µk}, and noise level η. Motivated by Theorems 4.2.2
and 4.3.2, {nk} and {µk} are defined in terms of the decay factor r, the special constant
ζ ≥ 0 which we refer to as the (target) error level, and a constant δ > 0. Referring to
Theorem 4.3.2, we define δ =

√
s

CdNd and the error level ζ corresponds to ζ in the theorem.
Thus, δ determines the number of inner iterations nk = n =

⌈ √
2

rδNd/2

⌉
−1 and the smoothing

parameters µk = rδεk−1 where εk−1 is defined in terms of r and ζ as in Theorem 4.3.2. Note
that δ accounts for both the generally unknown constants s and C, the latter depending on
the rNSP constants ρ and γ of the measurement matrix. In this way, it is unnecessary to
treat s and C as two separate hyperparameters. Unless stated otherwise, we fix r = e−1 and
ζ = 10−9, with further explanation of these choices provided in Section 6.3. The remaining
hyperparameters are defined per experiment.

We use two test images which are shown in Fig. 6.1. The GLPU phantom [38] is suitable
to test Fourier imaging techniques since it is a realistic image with a known analytic expres-
sion for its Fourier transform. In addition, it is piecewise constant and thus exactly sparse
under the discrete gradient transform. The brain MR image was provided by the authors
of [5]. The GLPU phantom is used all throughout except in the stability experiment, where
we use the brain MR image.
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Figure 6.1: GLPU phantom (left) and brain MR image (right).

6.2 Restarted NESTA performance

6.2.1 Exponential decay of reconstruction error

Here we fix a 12.5% sampling rate, t = 19 restarts, δ = 2 · 10−4, and η = 10−i for fixed i =
1, 2, . . . , 6. Each restart iteration runs 38 inner iterations. A reminder that the measurements
are computed as described in Section 3.3 yielding stacked measurements y = Ax + e. Here
e is drawn uniformly random from the surface of a ball of radius η, i.e. {e : ∥e∥ℓ2 = η}. The
restart iterate error ∥x⋆

k − x∥ℓ2 for each k is plotted in Fig. 6.2 (left). For each noise level η,
the error decays exponentially to a limiting error proportional to η. This is consistent with
error bounds established in Theorems 4.3.2 and 5.3.2. Since the GLPU phantom is piecewise
constant, it is exactly sparse under the discrete gradient transform, so σs(V x)ℓ1 = 0 for
some suitable s (which is implicitly defined in δ). As we expect, the final reconstruction
error is from the uncertainty in the measurements due to noise, corresponding to the noise
level η.

6.2.2 Comparing NESTA with and without restarts

To compare NESTA with and without restarts, we evaluate the reconstruction error of the
inner iterates from restarted NESTA and arrange the results by total number of iterations.
We reuse the same parameters from the previous experiment, except η = 10−7, t = 199.
In the no-restart case, we fix smoothing parameters µ = 10−i, i = 3, 4, 5, 6, 7. Here we
run NESTA for at least 5000 total iterations for both with and without restarts. Fig. 6.2
(right) plots the reconstruction error ∥xt − x∥ℓ2 for each total iteration t. As observed in
the previous experiment, the restart scheme reconstruction error exponentially decays to a
limiting error level proportional to η. Without restarts, the convergence rate and limiting
error level is sensitive to the smoothing parameter µ. Larger µ means the solver converges
quickly albeit to a larger error level, whereas smaller µ leads to a lower error level at the
cost of needing many more iterations. This is consistent with what we observe in the theory,
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Figure 6.2: The left plot shows performance of restarted NESTA with different noise levels
η, displaying exponential decay in the image error ∥x⋆

k − x∥ℓ2 . The right plot compares
NESTA with and without restarts for varying smoothing parameters µ.

namely the error bound in Theorem 4.2.2 for NESTA without restarts. As anticipated, the
restart scheme excels in performance for problems in a low-noise regime.

Observe that the no-restart cases intuitively inform a restarting procedure, whereby
we rerun NESTA reducing the smoothing parameter µ after some sufficient decrease in
error. This decrease occurs rapidly when the initial guess is sufficiently close and a suitable
new µ is chosen. The restart scheme effectively automates selecting the number of inner
iterations and smoothing parameters via Theorem 4.3.2, using the values ζ, δ and r. The
parameter ζ (and also η) control the extent of the limiting error. Here r controls the rate of
convergence with a tradeoff in number of inner iterations. The number δ correctly scales the
inner iterations and smoothing parameters, and is described in detail in the next section.

6.3 Hyperparameter selection

For this section, we offer extended discussion on how to select the restarted NESTA param-
eters t, r, ζ, η, and δ. These include general guidelines and observations that stay close to
the theoretical results presented throughout this thesis. For ζ and δ, we show two respective
experiments informing our selections.

The hyperparameter choices are broadly informed by Theorems 4.3.1 and 4.3.2. This
presents a gap between theory and practice, whereby some of these parameter values are
unknown a priori. For example, δ depends on rNSP/RIP constants which are not practical
to compute [92]1 and ζ is unknown in the absence of the true signal being recovered.

1The authors prove that the decision problem of whether a matrix satisfies the NSP (Null Space Property)
or RIP, with specific constants, are both NP-hard. We expect an analogous NP-hardness result to hold with
the rNSP by adapting the arguments described in the paper.
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To choose the number of restarts t, one can select minimal t so that the first error term
of Theorem 4.3.2 is at most precision α > 0, i.e. rt+1∥x∥ℓ2 ≤ α. In practice, only a domain-
specific upper bound to ∥x∥ℓ2 can be used when choosing α. Otherwise, choosing t turns
into a matter of trial and error.

The decay factor r controls the rate of convergence and the limiting error bound, but
is also inversely proportional to the number of inner iterations nk. Effectively, to obtain
faster convergence per restart and a lower error, we need to compute more inner iterations.
To strike a balance between the two, an optimal choice of r can be derived when we fix
the number of restarts and minimize the total number of inner iterations. Suppose α =
rk+1∥x∥ℓ2 , which corresponds to the first error term in Theorem 4.3.2 for some fixed k ≥ 0.
Then using n =

⌈√
2CdNd/2

r
√

s

⌉
− 1 ≲ 1

r , the total number of iterations is bounded by

(k + 1)(n + 1) ≲ 1
r log(1/r) .

Minimizing the upper bound with respect to r > 0 yields r = e−1. Observe that this optimal
choice of r is independent of N , d, C and so on. This provides a sensible default value of r

while avoiding arbitrary selection as resorted to in [75], wherein the same reasoning can be
applied. With this, we chose r = e−1 for all experiments presented in this chapter.

Regarding the choice of ζ, experimentally we found it to be sufficient to choose ζ <

η. More generally, ζ can arbitrarily small but nonzero, so for instance one can choose
machine epsilon. To showcase this, we run an experiment that uses the same parameters
from the exponential decay experiment (Section 6.2.1), except the sampling rate is 25%,
t = 49, y = Ax, and η, ζ = 10−i for i = 0, 1, . . . , 8. A higher sampling rate was chosen to
guarantee a high precision reconstruction for the lowest noise levels. In Fig. 6.3, we plot the
reconstruction error of restarted NESTA’s final iterate for different starting values of η and
ζ. The contours are approximately of the form max{η, ζ/10}, which suggests that restarted
NESTA cannot produce a reconstruction much better than the assumed noise level η or
error level ζ. This further suggests that one can choose ζ to be less than the true error value
without sacrificing accuracy. However, the theory alone (Theorems 4.3.1 and 4.3.2) does not
conclude this, which instead assumes ζ to be an upper bound for the true error level. This
assumption is leveraged to show exponential decay in the restart scheme’s reconstruction
error. Regardless, the experiment highlights that in practice we do not need to treat ζ as an
upper bound. As already mentioned, ζ can be as small as possible, provided the computed
smoothing parameters {µk} do not become zero (i.e. fall below machine precision).

For the choice of δ, there are a few comments to make. By definition, δ is proportional to
µk and inversely proportional to nk, suggesting a tradeoff between quality of reconstruction
and number of inner iterations. In practice, it is difficult to determine an optimal choice of
δ. The optimal choice is one where we avoid both being short of the best reconstruction and
expending unnecessary calculations of the iterates. This tradeoff is showcased in the plots
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Figure 6.3: Contours of the error ∥x̂η,ζ − x∥ℓ2 , where x̂η,ζ is the final iterate of restarted
NESTA with given parameters η and ζ.

of Fig. 6.4. For this, the corresponding experiment matches the setup of Section 6.2.1, with
12.5% (left) and 25% (right) sampling rates, and share t = 49, η = 10−5, and δ = 10−i for
i = 3.40, 3.44, . . . , 3.76 (left) and i = 3.20, 3.24, . . . , 3.56 (right). Focusing on the left plot,
observe that for δ ≤ 10−3.68, the restart scheme attains the lowest possible error level after
about 15 restart iterations. Until then, there is a critical value 10−3.68 < δ < 10−3.64 (i.e.
33 ≤ n ≤ 36) where the reconstruction performance drastically deteriorates and the limiting
error level becomes O (1) for larger values of δ. The same phenomenon is demonstrated
numerically in [2, 3]. An analogous phenomenon holds for the right plot, where the critical
δ differs and is instead 10−3.32 < δ < 10−3.28 (i.e. n = 15). More broadly, the true value
of δ is expected to depend on the sparsity s and the sampling mask, as this would yield
different rNSP constants. To clearly see how δ relates to n and

√
s/C, see Fig. 6.5.

Lastly, considering a priori information to select δ is absent in a practical setting, one
must resort to tuning δ. See Chapter 7 for further discussion.

6.4 Worst-case perturbations

Computing worst-case (or adversarial) perturbations is a standard empirical technique to
verify the stability of a deep neural network. The concept originates in image classification
[90], and has since become important in many other machine learning applications [101].
Computing adversarial perturbations in compressive imaging [7, 32, 36, 46] is a recent, yet
important, development to study robustness of deep learning for inverse problems. For more
information, see the references in Chapter 1.

To empirically verify stability, given stacked measurements y = Ax we compute a worst-
case perturbation [7] e of the measurements y that maximize the difference between N (y)
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Figure 6.4: Performance of restarted NESTA with varying values of parameter δ. The cor-
responding problem sampling rates are 12.5% (left) and 25% (right).
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and N (y + e), where N : Cm → CN2 is a NESTANet. More precisely, we try to solve

max
e=(e1,e2)∈Cm

∥N (y)−N (y + e)∥2ℓ2 subject to ∥e∥ℓ2 ≤ η̃, e1 = e2, (6.4.1)

analogous to the setup in [36, Sec. 3.4]. Note that e here is expressed as a stacked vector
(see (4.1.5)), where abusing notation, e1 and e2 refer to its first and second block.

Here η̃ is a parameter controlling the maximum size permitted for the perturbation. To
solve (6.4.1), we use projected gradient ascent for a fixed number of iterations, noting that
the projection onto the feasible set of (6.4.1) is straightforward to compute. Over all the
gradient ascent iterates we select the one that produced the largest objective value of (6.4.1).
Note that due to a technical artifact of the stacking scheme described in Remark 4.1.3, an
implicit constraint on e must be satisfied otherwise the solver update steps are undefined.
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Specifically, we need ∥e1 − e2∥ℓ2 ≤
√

2η where η is the stacked NESTA noise level parameter.
For simplicity, we instead enforce e1 = e2, noting that in practice one usually does not
generate measurements for the same frequency more than once.

Observe that exactly solving (6.4.1) means determining the local η̃-Lipschitz constant of
the network N , and therefore if small, assert stability of N at the given y. Unfortunately,
due to the high-dimensional nonconvex nature of (6.4.1) we can at best approximate local
optima. Also, the local optima one finds is now sensitive to the choice of gradient ascent’s
step size and initialization. For these reasons, numerical results indicative of stability fall
short of being a conclusive verification of stability.

To best address the nonlinearity of (6.4.1), our experiment consists of running many
independent trials of projected gradient ascent. We use an adaptive step size via PyTorch’s
ReduceLROnPlateau with an initial step size of 1 and initialize e uniformly random over
the ℓ2-ball of radius η̃/

√
m centred at zero. The perturbation selected is one that maximizes

the objective over all iterates in all trials belonging to a specific value of η̃.
Since automatic differentiation is used to compute the gradient of the objective in (6.4.1),

the optimization procedure is computationally expensive for large numbers of restarts or
inner iterations defining the NESTANet. This limits performing this experiment to smaller
unrolled networks. Hence we use a much lower number of unrolled iterations here in com-
parison to the previous experiments.

Detailing the experiment, we use a 25% sampling rate, K = 7 restarts, δ = 5 · 10−4,
η = 10−2 and η̃ = 10iη with i = 0, 1, 2, 3. The worst-case perturbations e are computed for
measurements y = Ax where x is the brain MR image in Fig. 6.1. We perform 1000 trials of
gradient ascent for each value of η̃, each consisting of 500 ascent iterations. For each value of
η̃, we plot the worst-case perturbation maximizing (6.4.1) and the reconstruction difference
of the perturbed measurements in Fig. 6.6. The perturbations themselves are represented
in the image domain by applying the (right) Moore-Penrose pseudoinverse B† = m

N2 B∗ to
the perturbation e1 = e2. The use of colour plots are to help visualize the perturbation
and reconstruction differences, since for lower noise levels the visual artifacts are hard (or
impossible) to see in a grayscale image.

What we observe is analogous to [75], where for η̃ = η we achieve the stability we
expect from the theory, e.g. Theorem 4.2.2. In fact, even for larger perturbations beyond
the assumed noise level (η̃ > η), the algorithm remains stable. It may be possible to also
theoretically justify this observation in our setting, e.g. by modifying [18]. The experiment
suggests that NESTANets are also stable to perturbations exceeding the prescribed noise
level. Interestingly, the worst-case perturbations computed for each η̃ tend to insert minor
visual artifacts near the discontinues of the image, i.e. the boundaries of piecewise smooth
components. A closeup of this is shown in Fig. 6.7 for η̃ = 103 · η, where visual artifacts
appear along edges in the reconstruction of the perturbed measurements.
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Figure 6.6: Colour plots of estimated worst-case perturbations e = (e1, e2) in the image
domain (left column) and the reconstruction differences (right column). The absolute value
is applied elementwise. The constraint parameter for e is varied by row of plots, with
η̃ = 10iη with η = 0.01 and i = 0, 1, 2, 3. For ease of visualization, the plots in the left and
right column use a power-law colourmap rescaling of 4/5 and 2/5, respectively.
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Figure 6.7: Crops of N (y) and N (y + e) for the computed worst-case perturbation e with
η̃ = 103η. The images are grayscale renders of clipped elementwise absolute values of the
reconstructions.
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Chapter 7

Conclusions and future work

To summarize, we presented the existence of stable, accurate and efficient neural networks,
termed NESTANets, for Fourier imaging with a gradient-sparse model. We demonstrated
theoretically that such networks can be constructed via a novel unrolling of the (stacked)
NESTA optimization algorithm, and verified their properties empirically with several nu-
merical experiments. There are several avenues of future research that may be of interest.

The proof techniques take inspiration from [30] and extend the results of [75]. Our main
result shows that one can construct a neural network that matches the optimal accuracy
and stability tradeoff from compressed sensing. We made no attempt to investigate whether
such a network can be learned or if a network with better performance can be computed.
This motivates two possible research directions. The first is to find nontrivial sufficient or
necessary conditions for a network to learn the state-of-the-art performance of model-based
methods. From the discussion in [37], we anticipate that such a learning procedure will be
hybrid-based. On that note, the second direction would be to study recovery guarantees for
hybrid-based techniques, ideally performing as well as state-of-the-art model-based methods.

To our knowledge, this work and [75] are the first instances of NESTA, and more gener-
ally Nesterov’s method with smoothing, used as part of an unrolling scheme. Smoothing via
the Moreau envelope is a standard tool in optimization that can be used for more general
nonsmooth problems other than QCBP. It would be interesting to see smoothing used and
adapted for other unrolling schemes.

The Bernoulli model for sampling has not been widely used and is not standard in com-
pressed sensing. This may be due to the fact that the number of measurements is a random
variable. Despite this, as reflected in our work, the Bernoulli model serves as a technical and
practical benefit to compute the orthogonal projection of NESTA. Computing projections
is not specific to NESTA, since any optimization algorithm that enforces feasibility will
need to compute some kind of projection. It is worth noting that since we have computed
the orthogonal projection for the stacked QCBP constraint, it can now be used in other
projected optimization methods.
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In terms of applications, it would be interesting to apply the Bernoulli model and stack-
ing scheme to say, a more standard Fourier imaging application such as parallel MRI, where
redundancy in sampled frequencies occur. It would also be interesting to see if there are
other imaging modalities, apart from those in Fourier imaging, for which the stacking scheme
can be applied.

As shown in this thesis, the network depth can be significantly reduced by using a restart
scheme in the unrolling procedure. The efficiency of the restart scheme is guaranteed from
the image reconstruction error analysis. However, a notable downside is that the recovery
performance is sensitive to tuning the parameter δ. Its optimal value depends on constants
unknown in practice, which vary with the sampling pattern and image structure (sparsity).
The same issue also arises in [29, 30, 75]. We took this as motivation to investigate ways to
avoid parameter tuning in restarts, while also maintaining efficiency. This led to [3], where
we describe a restarting framework that performs a scheduled grid search on unknown
parameters (expressible in terms of δ) while preserving the exponential decay in image
reconstruction error. The framework also has the desirable property of omitting the error
level ζ as a parameter. Moreover, our restarting framework applies to any first-order method
used for any convex optimization problem. This is more general than restarting NESTA for
QCBP. A future line of work would be to produce an unrolling of this generalized restart
scheme.

Finally, some unexplored territory would be to extend these results to a variety of other
settings. For instance, other gradient-sparse-like models (e.g. total generalized variation),
measurement models (e.g. Walsh-Hadamard sampling, unknown noise levels), sampling pat-
terns or other classes of analysis operators.
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Appendix A

Notation and abbreviations

General notation

R, C real and complex numbers
Rn, Cn n-dimensional real and complex vector spaces
JMK set of positive integers {1, . . . , M}
A, B, . . . matrices (denoted by boldface uppercase characters)
a, b, . . . vectors (denoted by boldface lowercase characters)
A∗, a∗ adjoint of a matrix or vector
A⊤, a⊤ transpose of a matrix or vector
A, a complex conjugate of a matrix or vector
a, A, α, . . . numbers or sets (denoted by regular characters)
E expected value
P probability measure
ℓp p-norm
∥·∥ℓp vector p-norm of Rn or Cn

⟨·, ·⟩ 2-norm inner product of Rn or Cn

| · | absolute value of a number, or cardinality of a set
⊗ Kronecker product
⊙ elementwise multiplication
≲, ≲d less than or equal to, by a constant factor (depending on d)
≳, ≳d greater than or equal to, by a constant factor (depending on d)
≍ when ≲ and ≳ both hold
∝ proportional to

Compressed sensing and inverse problems

m number of measurements
s sparsity, i.e. number of nonzero entries
N image/signal dimension
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η measurement noise level
A measurement matrix
W analysis matrix
x image/signal vector
y measurement vector
e noise vector
S finite subset of positive integers
S∁ set complement of S
zS vector formed by the entries of z indexed by S
σs(z)ℓ1 best s-term approximation error
ρ, γ robust Null Space Property (rNSP) constants
δs sth Restricted Isometry Constant (RIC)
δ Restricted Isometry Property (RIP) parameter
A,Ai family of random vectors
C collection of families of random vectors
µ(A), µ(C) coherence of a family or collection, respectively

Fourier and gradient-sparse imaging

d image dimension
Nd image size
∥·∥TV anisotropic total variation (TV) semi-norm
V , V (d) anisotropic discrete gradient operator
Vi discrete ith partial derivative operator
F , F (d) Fourier matrix (i.e. discrete Fourier transform)
W , W (d) discrete orthonormal Haar wavelet transform
U unitary matrix
I identity matrix
Ω set of positive integer indices
PΩ row selection matrix based on indices Ω
△ symmetric different set operator
ei ith standard basis vector
ω Fourier domain frequency indices
ς lexicographical ordering of d-dimensional indices
ϱ, ϱ(d) arrangement of frequencies for (d-dimensional) Fourier matrix
p Bernoulli vector
p̂ near-optimal Bernoulli vector
Ber(JNK, m) Bernoulli uniform sampling scheme of order m
Ber(JNK, m, p) Bernoulli variable density sampling scheme of order m
pω, pi probability of sampling frequency ω (with index i)
qω weights for variable density sampling
Γ(p) constant factor for Fourier-Haar coherence bound
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Convex optimization

f, F, g, G, ϕ functions
∇f gradient of f
K Lipschitz constant of gradient, i.e. K-smoothness
µ smoothing parameter
fµ

1
µ smooth-approximation of function f with parameter µ

Mµ
f Moreau envelope of f with parameter µ

∥·∥ℓ1,µ smoothed ℓ1-norm with parameter µ

Tµ gradient of smoothed ℓ1-norm with parameter µ
Hµ Huber function with parameter µ
ρ, λ KKT multipliers
αn, τn parameter sequences in NESTA and Nesterov’s method
σp, σd strong convexity constants for Nesterov’s method
pp primal prox-function for Nesterov’s method
pd dual prox-function for Nesterov’s method
Q constraint set for Nesterov’s method
z′, Z ′ real equivalent of a complex vector and matrix

Neural networks

N∗, N∗
n,L,q class of neural networks

N neural network
L number of layers
n vector of neural network layer sizes
q number of nonlinear activation functions

Imaging recovery guarantees

χ bounding parameter for compressed sensing error
ζ error level parameter
µk, nk restart scheme smoothing and inner iteration parameters
x⋆

k kth restart iterate
δ smoothing-iteration tradeoff parameter
r restart scheme decay factor
CSs,d(z, p, η) compressed sensing error of z
I, IV ,χ,η gradient-sparse image model class
M, MA,V ,χ,η measurement model class of gradient-sparse images
polylog(. . . ) polynomial of logarithmic terms
O(·),Od(·) big O-notation (with constant factor depending on d)
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Abbreviatons

KKT Karush-Kuhn-Tucker
MRI Magnetic Resonance Imaging
NESTA NESTerov’s Algorithm for QCBP
QCBP Quadratically-Constrained Basis Pursuit
RIC Restricted Isometry Constant
RIP Restricted Isometry Property
rNSP robust Null Space Property
TV Total Variation
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