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Key contribution

We use approximate sharpness to design a meta-algorithm that ac-
celerates the convergence of any first-order optimization method.

Remarks:

1. Our approach, based on restarts, can be used with essentially any
first-order method

2. It applies to broad classes of convex problems, e.g. ℓ1-minimization

3. We guarantee fast decay of the objective function error down to an
underlying error level
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General setup

Problem: Let f : RN → R be proper, closed and convex, and Q ⊆ RN be
a closed, convex set. Consider the problem

min
x∈Q

f (x) (⋆)

and let X̂ be its set of minimizers with function value f̂ .

Approximate sharpness: We assume that (⋆) satisfies

dist(x , X̂ ) ≤

(
f (x)− f̂ + gQ(x) + η

α

)1/β

, ∀x ∈ RN ,

where α > 0, η ≥ 0 and β ≥ 1, dist(x , X̂ ) = infz∈X̂ d(x , z) for some

metric d on RN and gQ is a known function satisfying if dist(xi ,Q) → 0,
then gQ(x0) → 0.
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Related work - sharpness

Approximate sharpness generalizes the well-known condition

dist(x , X̂ ) ≤

(
f (x)− f̂

α

)1/β

, ∀x ∈ RN ,

dubbed sharpness, Hölderian growth or Lojasiewicz-type inequality.

Hoffman (1952), Lojasiewicz (1963), Robinson (1975), Mangasarian (1985), Auslender & Crouzeix

(1988), Burke & Ferris (1993), Burke & Deng (2002), Bolte, A. Daniilidis & Lewis (2007), ...

Various works have used these conditions to quantify/accelerate
convergence:

Nemirovskii & Nesterov (1985), Attouch, Bolte, Redont & Soubeyran (2010), Bolte, Nguyen,

Peypouquet & Suter (2017), Bolte, Sabah & Teboulle (2014), Frankel, Garrigos & Peypouquet

(2015), Karimi, Nutini & Schmidt (2016), Kerdreux, d’Aspremont & Pokutta (2019), ...

Recent works employing restart schemes specifically:

Roulet & d’Aspremont (2020), Roulet, Boumal & d’Aspremont (2020), Renegar & Grimmer (2021)
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Approximate sharpness and constants

dist(x , X̂ ) ≤

(
f (x)− f̂ + gQ(x) + η

α

)1/β

, ∀x ∈ RN .

Generalizations:

• We allow η > 0.

• We incorporate a feasibility gap function gQ , which means the
optimization method need not produce feasible iterates.

• We do not assume the constants α, β and η are known to apply
our restart scheme.
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Motivation from compressed sensing

Compressed sensing concerns the recovery of (approximately) sparse vec-
tors from incomplete sets of noisy, linear measurements.

Typical setup:

• The vector x ∈ CN to recover

• Measurement matrix A ∈ Cm×N (often with m ≪ N)

• Linear measurements y = Ax + e ∈ Cm, where e ∈ Cm is noise

• Goal: Recover the vector x from the measurements y
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Sparsity and ℓ1-minimization

Sparsity: x is s-sparse if it has at most s nonzero entries.

Approximate sparsity: “σs(x)1 := min{∥x − z∥1 : z is s-sparse} is small”.

Standard approaches to recover (approximately) sparse x in compressed
sensing involve ℓ1-minimization, e.g. Quadratically Constrained Basis
Pursuit (QCBP)

min
z∈CN

∥z∥1 subject to ∥Az − y∥2 ≤ ς.

Equivalent to:

min
z∈Q

f (z), f (z) = ∥z∥1, Q = {z : ∥Az − y∥2 ≤ ς}.
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Compressed sensing theory

Definition (Restricted Isometry Property)

Let 1 ≤ s ≤ N. The sth Restricted Isometry Constant (RIC) δs of a
matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22,

for all s-sparse vectors x . If 0 ≤ δs ≤ 1, then A is said to have the
Restricted Isometry Property (RIP) of order s.

Intuition: A approximately preserves the norm of any s-sparse vector.

Adcock & Hansen (2021), Foucart & Rauhut (2013)
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Approximate sharpness in compressed sensing

Lemma

Suppose that A ∈ Cm×N has the RIP of order 2s with constant
δ = δ2s <

√
2− 1. Then the QCBP problem satisfies

dist(x , X̂ ) ≤

(
f (x)− f̂ + gQ(x) + η

α

)1/β

, ∀x ∈ CN ,

where gQ(z) =
√
s max{∥Az − y∥2 − ς, 0}, α = C1

√
s, β = 1,

η = C2σs(x)1 + C3
√
sς, and the constants C1,C2,C3 depend on δ only.

Approximate sharpness: the distance to X̂ is bounded by:

• the error in the objective function f (x)− f̂

• the feasibility gap gQ(x)
• the underlying compressed sensing error η
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Approximate sharpness in compressed sensing

dist(x , X̂ ) ≤

(
f (x)− f̂ + gQ(x) + η

α

)1/β

, ∀x ∈ RN

In the compressed sensing example with

α = C1

√
s, β = 1, η = C2σs(x)1 + C3

√
sς.

• the order s of the RIP may be unknown

• σs(x)1 is typically unknown

• C1,C2,C3 depend on the RIC δ

• moreover, given A and s, finding the RIC δ is NP-hard
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Restart scheme

Let Γ be a first-order method that takes input (x , δ, ϵ) ∈ CN × R+ × R+.

x0 Γ

δ1 ϵ1

x1 Γ

δ2 ϵ2

x2 Γ

δ2 ϵ2

x3 . . .

• Run multiple instances of Γ, where the output xk of the kth instance
is used as the input of the (k + 1)th instance

• Update the parameters (δ, ϵ) = (δk+1, ϵk+1) using the approximate
sharpness condition

• Restarts can be extended to perform a grid search over α or β if
their values are unknown, while preserving the order of convergence
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Restart scheme for unknown α, β, η

Adcock, Colbrook & Neyra-Nesterenko (2024)
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Theorem (Unknown α, β, η)

Suppose the number of iterations computed by Γ is at most Cδd1/ϵd2 +1,
for all δ, ϵ > 0. Then there is a restart scheme such that after at most

Ĉ · εd1/β∗−d2 ·

{
⌈log(1/ε)⌉ , if d2 ≤ d1/β∗,

1, if d2 > d1/β∗,

iterations of Γ, where β∗ is the scheme’s closest grid point to β, the
restart scheme produces an output x⋆ satisfying

f (x⋆)− f̂ + gQ(x⋆) ≤ max{ε, η}.

Here Ĉ depends on C , α, β∗, d1 and d2.

Remark: There are restart schemes for the special cases when α or β are
known, and analogous results can be stated.

Adcock, Colbrook & Neyra-Nesterenko (2024)
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Rates for different problem classes

Remark: The first three lines constitute optimal rates.

Adcock, Colbrook & Neyra-Nesterenko (2024)
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Compressed sensing example

If d1 = d2/β, then the cost bound reduces to Ĉ · log(1/ε), yielding linear
decay to η.
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Recovery error vs. # iterations

Example: Γ is primal-dual iter-
ation applied to QCBP, where
β = d1 = d2 = 1.

This is applied to our compressed
sensing problem, where A is a
Gaussian random matrix and ς =
10−6. The ground truth x is ex-
actly sparse, hence η ≈ ς.

Issue: Restarts are brittle with respect to fixed α.

20 / 23



Motivations Restart schemes Numerical example Conclusions

Compressed sensing example
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A direct comparison of restart
schemes with tuned constants
and the nonrestarted optimization
method Γ (primal-dual iterations).

Grid searching maintains linear de-
cay and still outperforms the non-
restarted optimization method.
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Conclusions

Convex optimization problems arising in applications, such as image and
signal reconstruction, matrix completion, feature selection) satisfy an
approximate sharpness condition with unknown constants.

In this setting, our goal is to obtain fast convergence down to the
(unknown) approximate sharpness constant η.

We introduced an algorithm for accelerating any convex optimization
method, based on restarts and grid searching.

This leads to optimal rates for various convex optimization problems and
competitive practical performance.

Paper: Restarts subject to approximate sharpness: A parameter-free and

optimal scheme for first-order methods. Foundations of Computational

Mathematics (in press, 2024).
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